Reconfiguration Techniques and Geometric Constraints of Metamorphic Mechanisms

This paper proposes a geometric way to generate metamorphic configurations and investigates metamorphic principles based on geometrized displacement group. Metamorphic reconfiguration techniques are revealed as the variations of kinematic joints, kinematic links and geometric orientation constraints particularly by examining the invariant configuration properties of a mechanism. The nature of all these configuration changes belongs to geometric constraint category. Metamorphic configuration units are proposed as the irreducible reconfiguration modules to envelop these reconfiguration techniques. It can self-reconfigure or be combined to generate metamorphosis. Moreover, the geometrized displacement group is lent to achieve a geometric representation for configuration modelling and further reconfiguration operations. Based on seting up kinematic group extended qualitatively according to its group structure, geometrized displacement group modelling is proposed for these identified metamorphic configuration units. The investigated group motion-matrix is an integration of its displacement group properties and kinematic extensions. Then defined geometric constraint relations and the proposed dependence rules lead to metamorphic principles. In this way, metamorphic process is mapped to matrix operations under group extensions and their compositions. Design examples and a metamorphic joint with six configurations are given to illustrate the feasibility of these metamorphic principles.Copyright © 2009 by ASME