Behavior and mechanism of in-situ synthesis of auxiliary electrode for electrochemical sulfur sensor by calcium aluminate system

[1]  Jingkun Yu,et al.  Application of solid electrochemical sulfur sensor in the liquid iron , 2019, Sensors and Actuators B: Chemical.

[2]  T. Wen In-situ Synthesis of an Auxiliary Electrode of Solid Electrochemical Sulfur Sensor by CaAl4O7 Coating , 2018, International Journal of Electrochemical Science.

[3]  G. Tu,et al.  Formation mechanism of calcium aluminate compounds based on high-temperature solid-state reaction , 2016 .

[4]  Jingkun Yu,et al.  A review of high-temperature electrochemical sensors based on stabilized zirconia , 2015 .

[5]  Bart Blanpain,et al.  Desulphurisation of Stainless Steel by Using CaO–Al2O3 Based Slags during Secondary Metallurgy , 2012 .

[6]  Tao Liu,et al.  A Review of Solid-State Electrochemical Sensors for Measurements of Sulfur Content of Liquid Metals , 2009 .

[7]  Jingkun Yu,et al.  An electrochemical sulfur sensor based on ZrO2(MgO) as solid electrolyte and ZrS2 + MgS as auxiliary electrode , 2009 .

[8]  M. Zawrah,et al.  Synthesis and characterization of calcium aluminate nanoceramics for new applications , 2007 .

[9]  Alexander McLean,et al.  The science and technology of steelmaking—Measurements, models, and manufacturing , 2006 .

[10]  M. Hino,et al.  Sulphide Capacity and Sulphur Solubility in CaO-Al2O3 and CaO-Al2O3-CaF2 Slags , 2004 .

[11]  Jia Lin Sun,et al.  An application of the electrochemical sulfur sensor in steelmaking , 2002 .

[12]  D. Gozzi,et al.  Sulfur determination in carbon-saturated iron by solid-state electrochemical sensor , 1994 .

[13]  M. A. Gülgün,et al.  Chemical Synthesis and Characterization of Calcium Aluminate Powders , 1994 .

[14]  F. T. Wallenberger,et al.  Melt-processed calcium aluminate fibers: structural and optical properties , 1991, Defense, Security, and Sensing.

[15]  M. Weinberg,et al.  Preparation and Crystallization of Sol‐Gel Calcia–Alumina Compositions , 1991 .

[16]  T. Fujisawa,et al.  Equilibrium between Molten Iron Alloys and CaO-Al2O3-CaS Slags Saturated with CaS , 1990 .

[17]  R. J. Fruehan,et al.  The sulfur partition ratio and the sulfide capacity of Na2O-SiO2 Slags at 1400 °C , 1986 .

[18]  I. Sommerville,et al.  The composition and temperature dependence of the sulfide capacity of metallurgical slags , 1986 .

[19]  Kevin Kendall,et al.  The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[20]  K. Kendall,et al.  Flexural strength and porosity of cements , 1981, Nature.

[21]  Jingkun Yu,et al.  Synthesis of an auxiliary electrode by laser cladding coating for in-situ electrochemical sulfur sensing , 2015 .

[22]  K. Michalek,et al.  Desulphurization of the high-alloy and middle-alloy steels under the conditions of an eaf by means of synthetic slag based on CaO-Al2O3 , 2012 .

[23]  T. Volkov-Husovi,et al.  RELATIONSHIP BETWEEN THE CALCULATED OXYGEN ACTIVITY AND THE SULFUR PARTITION RATIO FOR CaO-Al2O3-SiO2-MgO SLAG DURING LADLE REFINING RAZMERJE MED IZRA^UNANO AKTIVNOSTJO KISIKA IN DELE@EM PORAZDELITVE @VEPLA V @LINDRI CaO-Al2O3-SiO2-MgO MED RAFINACIJO V LIVNEM LONCU , 2012 .

[24]  Zhang Zongwang,et al.  DEVELOPMENT OF SULFUR SENSOR FOR QUICK ANALYSIS OF HOT METAL , 2000 .

[25]  Bengt Hallstedl Assessment of the CaO‐Al2O3 System , 1990 .

[26]  R. Fruehan,et al.  The sulfur partition ratio and the sulfide capacity of Na2O-SiO2 slags at 1200 °C , 1986 .