Complex-Order Scale-Invariant Operators and Self-Similar Processes

Derivatives and integration operators are well-studied examples of linear operators that com-mute with scaling up to a fixed multiplicative factor; i.e., they are scale-invariant. Fractional order derivatives (integration operators) also belong to this family. In this paper, we extend the fractional operators to complex-order operators by constructing them in the Fourier do-main. We analyze these operators in details with a special emphasis on the decay properties of the outputs. We further use these operators to introduce a family of complex-valued stable processes that are self-similar with complex-valued Hurst indices. These processes are expressed via the characteristic functionals over the Schwartz space of functions. Besides the self-similarity and stationarity, we study the regularity (in terms of Sobolev spaces) of the proposed processes.

[1]  M. Kunze Invariances , 2021, A Birman-Schwinger Principle in Galactic Dynamics.

[2]  J. P. Ward,et al.  The Critical Smoothness of Generalized Functions , 2020, 2009.12491.

[3]  Michael Unser,et al.  Gaussian and Sparse Processes Are Limits of Generalized Poisson Processes , 2017, Applied and Computational Harmonic Analysis.

[4]  Michael Unser,et al.  Scaling Limits of Solutions of Linear Stochastic Differential Equations Driven by Lévy White Noises , 2019 .

[5]  M. Unser,et al.  Wavelet Analysis of the Besov Regularity of L\'evy White Noises , 2018, 1801.09245.

[6]  Yizao Wang,et al.  Generalized Random Fields and Lévy's Continuity Theorem on the Space of Tempered Distributions , 2017, Civil War Book Review.

[7]  M. Unser,et al.  Multidimensional Lévy white noise in weighted Besov spaces , 2016, Stochastic Processes and their Applications.

[8]  J. P. Ward,et al.  Applied and Computational Harmonic Analysis on the Besov Regularity of Periodic Lévy Noises , 2022 .

[9]  J. P. Ward,et al.  The n-term Approximation of Periodic Generalized L\'evy Processes. , 2017 .

[10]  I. Gelfand,et al.  Generalized Functions: Properties and Operations , 2016 .

[11]  Paul B. Garrett Topological vector spaces , 2016 .

[12]  Michael Unser,et al.  Wavelet Statistics of Sparse and Self-Similar Images , 2015, SIAM J. Imaging Sci..

[13]  Robert Stelzer,et al.  Lévy-driven CARMA Processes , 2015 .

[14]  A. Amini,et al.  On the Continuity of Characteristic Functionals and Sparse Stochastic Modeling , 2014, Journal of Fourier Analysis and Applications.

[15]  Michael Unser,et al.  A unified formulation of Gaussian vs. sparse stochastic processes - Part II: Discrete-domain theory , 2011, ArXiv.

[16]  Michael Unser,et al.  A unified formulation of Gaussian vs. sparse stochastic processes - Part I: Continuous-domain theory , 2011, ArXiv.

[17]  P. Massopust Exponential Splines of Complex Order , 2013, 1311.0140.

[18]  Peter Massopust,et al.  Signal Analysis based on Complex Wavelet Signs , 2012, ArXiv.

[19]  Michael Unser,et al.  Left-inverses of fractional Laplacian and sparse stochastic processes , 2010, Adv. Comput. Math..

[20]  P. D. Tafti Self-Similar Vector Fields , 2011 .

[21]  Michael Unser,et al.  An Introduction to Sparse Stochastic Processes , 2014 .

[22]  M. Veraar Regularity of Gaussian white noise on the d-dimensional torus , 2010, 1010.6219.

[23]  K. Burnecki,et al.  Fractional Lévy stable motion can model subdiffusive dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Peter J. Brockwell,et al.  Existence and uniqueness of stationary Lvy-driven CARMA processes , 2009 .

[25]  Dimitri Van De Ville,et al.  Invariances, Laplacian-Like Wavelet Bases, and the Whitening of Fractal Processes , 2009, IEEE Transactions on Image Processing.

[26]  R. Sánchez,et al.  Kinetic equation of linear fractional stable motion and applications to modeling the scaling of intermittent bursts. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Thierry Blu,et al.  Self-Similarity: Part II—Optimal Estimation of Fractal Processes , 2007, IEEE Transactions on Signal Processing.

[28]  Thierry Blu,et al.  Self-Similarity: Part I—Splines and Operators , 2007, IEEE Transactions on Signal Processing.

[29]  Z. Huang,et al.  On fractional stable processes and sheets: White noise approach , 2007 .

[30]  Christian Bender,et al.  Arbitrage with fractional Brownian motion , 2007 .

[31]  Makoto Maejimaz,et al.  An introduction to the theory of selfsimilar stochastic processes , 2007 .

[32]  Fractional Brownian Motion and Sheet as White Noise Functionals , 2006 .

[33]  M. Unser,et al.  Complex B-splines , 2006 .

[34]  T. Marquardt Fractional Levy processes with an , 2006 .

[35]  V. Pipiras Wavelet-based simulation of fractional Brownian motion revisited , 2005 .

[36]  Peter J. Brockwell,et al.  Lévy-driven and fractionally integrated ARMA processes with continuous time parameter , 2005 .

[37]  J. L. Véhel,et al.  Stochastic fractal models for image processing , 2002, IEEE Signal Process. Mag..

[38]  Rachid Harba,et al.  nth-order fractional Brownian motion and fractional Gaussian noises , 2001, IEEE Trans. Signal Process..

[39]  G. Franceschetti,et al.  Scattering from natural rough surfaces modeled by fractional Brownian motion two-dimensional processes , 1999 .

[40]  Y. Meyer,et al.  Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion , 1999 .

[41]  Georges Oppenheim,et al.  Distribution processes with stationary fractional increments , 1998 .

[42]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[43]  Conor Heneghan,et al.  Two-dimensional fractional Brownian motion: wavelet analysis and synthesis , 1996, Proceeding of Southwest Symposium on Image Analysis and Interpretation.

[44]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[45]  Trieu-Kien Truong,et al.  Spectral representation of fractional Brownian motion in n dimensions and its properties , 1995, IEEE Trans. Inf. Theory.

[46]  Stéphane Mallat,et al.  Characterization of Self-Similar Multifractals with Wavelet Maxima , 1994 .

[47]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[48]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[49]  Makoto Maejima,et al.  Self-Similar Stable Processes with Stationary Increments , 1991 .

[50]  M. Fox,et al.  Fractal feature analysis and classification in medical imaging. , 1989, IEEE transactions on medical imaging.

[51]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  伊藤 清 Foundations of stochastic differential equations in infinite dimensional spaces , 1984 .

[53]  H. Triebel Theory Of Function Spaces , 1983 .

[54]  D. S. Jones The theory of generalised functions: Table of Laplace transforms , 1982 .

[55]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[56]  L. Schwartz Théorie des distributions , 1966 .

[57]  P. Levy,et al.  Random functions : general theory with special reference to Laplacian random functions , 1953 .

[58]  A. Kolmogorov Wienersche spiralen und einige andere interessante Kurven in Hilbertscen Raum, C. R. (doklady) , 1940 .

[59]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .