Power- and Bandwidth-Efficient Euclidean Code with Sparse Generator Matrix

In this paper we propose a coded modulation scheme which is defined by a sparse real-valued generator matrix. As forward error correction (FEC) codes directly constructed in the Euclidean space, this kind of Euclidean codes (EC) named G-LDGM (Generalized Low-Density Generator Matrix) codes can naturally match the continuous communication channels. A shaping method based on hypercube lattice is introduced to prevent the power of signals from being too large. A linear-time parametric belief propagation (BP) decoding algorithm is formulated. To reduce the complexity of the decoding algorithm, passing messages are approximated as Gaussian distributions. A simplified analysis is given to show that under certain condition exponential convergence of decoding can be realized. A Monte Carlo density evolution method is provided to optimize the generator matrix. Simulation results suggest that the proposed 10,000 dimension G-LDGM code with no redundancy introduced into information data has a superior performance over non-binary LDPC (NB-LDPC) codes with both linear-time encoding and decoding.

[1]  Justin Dauwels,et al.  Power-constrained communications using LDLC lattices , 2009, 2009 IEEE International Symposium on Information Theory.

[2]  M. Tomlinson New automatic equaliser employing modulo arithmetic , 1971 .

[3]  William T. Freeman,et al.  Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology , 1999, Neural Computation.

[4]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[5]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[6]  Rudiger Urbanke,et al.  Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC , 2010, ISIT.

[7]  N. J. A. Sloane,et al.  A fast encoding method for lattice codes and quantizers , 1983, IEEE Trans. Inf. Theory.

[8]  Justin Dauwels,et al.  Message-passing decoding of lattices using Gaussian mixtures , 2008, 2008 IEEE International Symposium on Information Theory.

[9]  G.D. Forney,et al.  Combined equalization and coding using precoding , 1991, IEEE Communications Magazine.

[10]  Michael Isard,et al.  Nonparametric belief propagation , 2010, Commun. ACM.

[11]  Meir Feder,et al.  Shaping methods for low-density lattice codes , 2009, 2009 IEEE Information Theory Workshop.

[12]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[13]  Danny Dolev,et al.  A low density lattice decoder via non-parametric belief propagation , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[14]  Uri Erez,et al.  Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding , 2004, IEEE Transactions on Information Theory.

[15]  Paul H. Siegel,et al.  Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes , 2003, IEEE Trans. Inf. Theory.

[16]  Daniel Panario,et al.  Turbo Lattices: Construction and Performance Analysis , 2011, ArXiv.

[17]  David Burshtein,et al.  Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels , 2005, IEEE Transactions on Information Theory.

[18]  Gregory Poltyrev,et al.  On coding without restrictions for the AWGN channel , 1993, IEEE Trans. Inf. Theory.

[19]  Danny Bickson,et al.  Gaussian Belief Propagation: Theory and Aplication , 2008, 0811.2518.

[20]  Meir Feder,et al.  Efficient parametric decoder of low density lattice codes , 2009, 2009 IEEE International Symposium on Information Theory.

[21]  Justin Dauwels,et al.  Reduced-Memory Decoding of Low-Density Lattice Codes , 2010, IEEE Communications Letters.

[22]  Meir Feder,et al.  Signal Codes: Convolutional Lattice Codes , 2011, IEEE Transactions on Information Theory.

[23]  Amir H. Banihashemi,et al.  Low-Density Parity-Check Lattices: Construction and Decoding Analysis , 2006, IEEE Transactions on Information Theory.

[24]  Meir Feder,et al.  Low Density Lattice Codes , 2006, ISIT.