Alpha half-lives calculation of superheavy nuclei with Q α -value predictions based on the Bayesian neural network approach

[1]  S. Duarte,et al.  α-decay systematics for superheavy elements , 2012 .

[2]  S. Akkoyun,et al.  A study on ground-state energies of nuclei by using neural networks , 2013, 1301.2407.

[3]  F. G. Kondev,et al.  The NUBASE2016 evaluation of nuclear properties , 2017 .

[4]  W. Greiner,et al.  Cluster decay of superheavy nuclei , 2012 .

[5]  G. Gamow,et al.  Zur Quantentheorie des Atomkernes , 1928 .

[6]  M. Gonçalves,et al.  PRESCOLD: Calculation of the half-life for alpha decay, cluster radioactivity and cold fission processes , 1997 .

[7]  R. Utama,et al.  Validating neural-network refinements of nuclear mass models , 2017, 1709.09502.

[8]  Y. Oganessian,et al.  Super-heavy element research , 2015, Reports on progress in physics. Physical Society.

[9]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[10]  R. Gurney,et al.  Quantum Mechanics and Radioactive Disintegration , 1929 .

[11]  W. Greiner,et al.  Heavy-particle radioactivity of superheavy nuclei. , 2011, Physical review letters.

[12]  Wei-Chia Chen,et al.  Nuclear charge radii: density functional theory meets Bayesian neural networks , 2016, 1608.03020.

[13]  John W. Clark,et al.  Learning and prediction of nuclear stability by neural networks , 1992 .

[14]  Witold Nazarewicz,et al.  Neutron Drip Line in the Ca Region from Bayesian Model Averaging. , 2019, Physical review letters.

[15]  John W. Clark,et al.  Decoding Beta-Decay Systematics: A Global Statistical Model for Beta^- Halflives , 2008, ArXiv.

[16]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[17]  Zuker,et al.  Microscopic mass formulas. , 1995, Physical review. C, Nuclear physics.

[18]  K. A. Gernoth,et al.  Nuclear Mass Systematics Using Neural Networks , 2004 .

[19]  S. Duarte,et al.  BRIEF REPORT: Systematics of alpha-decay half-life: new evaluations for alpha-emitter nuclides , 2006 .

[20]  R. C. Barber,et al.  Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report) , 2011 .

[21]  R. Utama,et al.  Refining mass formulas for astrophysical applications: A Bayesian neural network approach , 2017, 1704.06632.

[22]  Liberati,et al.  α-decay study of 182;184 Tl , 2016 .

[23]  Y. Oganessian,et al.  A beachhead on the island of stability , 2015 .

[24]  Z. Niu,et al.  Predictions of nuclear β -decay half-lives with machine learning and their impact on r -process nucleosynthesis , 2018, Physical Review C.

[25]  M. Gonçalves,et al.  Alpha decay and nuclear deformation: the case for favoured alpha transitions of even-even emitters*Alpha decay and nuclear deformation: the case for favoured alpha transitions of even-even emitters , 2000 .

[26]  H. Stöcker,et al.  Cluster and alpha decay of superheavy nuclei , 2018 .

[27]  Gonçalves,et al.  Effective liquid drop description for the exotic decay of nuclei. , 1993, Physical review. C, Nuclear physics.

[28]  M. Terranova,et al.  Alpha decay half-life of bismuth isotopes , 2005 .

[29]  T. Yamazaki,et al.  Discovery of the element with atomic number Z = 118 completing the 7th row of the periodic table (IUPAC Technical Report) , 2016 .

[30]  D. Bingham,et al.  Estimating Parameter Uncertainty in Binding-Energy Models by the Frequency-Domain Bootstrap. , 2017, Physical review letters.

[31]  M. Gonçalves,et al.  HALF-LIVES FOR PROTON EMISSION, ALPHA DECAY, CLUSTER RADIOACTIVITY, AND COLD FISSION PROCESSES CALCULATED IN A UNIFIED THEORETICAL FRAMEWORK☆ , 2002 .

[32]  Ma,et al.  α Decay Half-lives of Superheavy Nuclei , 2018 .

[33]  H. B. Prosper,et al.  Nuclear mass predictions for the crustal composition of neutron stars: A Bayesian neural network approach , 2015, 1508.06263.

[34]  G. Münzenberg,et al.  The discovery of the heaviest elements , 2000 .

[35]  Witold Nazarewicz,et al.  Bayesian approach to model-based extrapolation of nuclear observables , 2018, Physical Review C.

[36]  M. Gonçalves,et al.  EFFECTIVE LIQUID DROP DESCRIPTION FOR ALPHA DECAY OF ATOMIC NUCLEI , 1998 .

[37]  John W. Clark,et al.  Neural networks that learn to predict probabilities: Global models of nuclear stability and decay , 1995, Neural Networks.

[38]  T. Yamazaki,et al.  Discovery of the elements with atomic numbers Z = 113, 115 and 117 (IUPAC Technical Report) , 2016 .

[39]  W. Nazarewicz,et al.  α -decay energies of superheavy nuclei: Systematic trends , 2018, Physical Review C.

[40]  P. Baldi,et al.  Searching for exotic particles in high-energy physics with deep learning , 2014, Nature Communications.

[41]  Z. Niu,et al.  Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects , 2018, 1801.04411.

[42]  M. Gonçalves,et al.  Half-life predictions for decay modes of superheavy nuclei , 2004 .

[43]  Xing Xu,et al.  The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures , 2017 .