Compositional MRI of Articular Cartilage - current status and the way forward.

[1]  K. Emanuel,et al.  The relation between the biochemical composition of knee articular cartilage and quantitative MRI: a systematic review and meta-analysis. , 2021, Osteoarthritis and cartilage.

[2]  N. Obuchowski,et al.  The QIBA Profile for MRI-based Compositional Imaging of Knee Cartilage. , 2021, Radiology.

[3]  C. Kuhl,et al.  Machine learning-augmented and microspectroscopy-informed multiparametric MRI for the non-invasive prediction of articular cartilage composition. , 2021, Osteoarthritis and cartilage.

[4]  O. Bieri,et al.  Assessment of Low-Grade Focal Cartilage Lesions in the Knee With Sodium MRI at 7 T , 2020, Investigative radiology.

[5]  J. Thiessen,et al.  MRI T2 and T1ρ relaxation in patients at risk for knee osteoarthritis: a systematic review and meta-analysis , 2019, BMC Musculoskeletal Disorders.

[6]  T. Smith,et al.  Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. , 2018, Osteoarthritis and cartilage.

[7]  M. Haapea,et al.  Variable angle gray level co‐occurrence matrix analysis of T2 relaxation time maps reveals degenerative changes of cartilage in knee osteoarthritis: Oulu knee osteoarthritis study , 2018, Journal of magnetic resonance imaging : JMRI.

[8]  Jari Rautiainen,et al.  Orientation anisotropy of quantitative MRI relaxation parameters in ordered tissue , 2017, Scientific Reports.

[9]  Simo Saarakkala,et al.  Multiparametric MRI assessment of human articular cartilage degeneration: Correlation with quantitative histology and mechanical properties , 2015, Magnetic resonance in medicine.

[10]  Garry E Gold,et al.  T2 Relaxation time quantitation differs between pulse sequences in articular cartilage , 2015, Journal of magnetic resonance imaging : JMRI.

[11]  F. Miese,et al.  Symptomatic Femoroacetabular Impingement: Does the Offset Decrease Correlate With Cartilage Damage? A Pilot Study , 2013, Clinical orthopaedics and related research.

[12]  Jukka S Jurvelin,et al.  Assessment of interstitial water content of articular cartilage with T1 relaxation. , 2009, Magnetic resonance imaging.

[13]  Gil Navon,et al.  Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST) , 2008, Proceedings of the National Academy of Sciences.

[14]  Andrew J Wheaton,et al.  Reduction of residual dipolar interaction in cartilage by spin‐lock technique , 2004, Magnetic resonance in medicine.

[15]  V. Mlynárik,et al.  Transverse relaxation mechanisms in articular cartilage. , 2004, Journal of magnetic resonance.

[16]  Juha Töyräs,et al.  Prediction of biomechanical properties of articular cartilage with quantitative magnetic resonance imaging. , 2004, Journal of biomechanics.

[17]  Juha Töyräs,et al.  Spatial assessment of articular cartilage proteoglycans with Gd‐DTPA‐enhanced T1 imaging , 2002, Magnetic resonance in medicine.

[18]  J. B. Kneeland,et al.  T1ρ‐relaxation in articular cartilage: Effects of enzymatic degradation , 1997, Magnetic resonance in medicine.