A stochastic threshold to predict extinction and persistence of an epidemic SIRS system with a general incidence rate

Abstract This work aims to give a detailed analysis of a stochastic epidemic model with a general incidence rate g ( S ) I . We introduce the generalized stochastic threshold R s ( g ) that will be used as a threshold condition of extinction, persistence and existence of an ergodic stationary distribution. We also investigate the critical case when R s ( g ) = 1 . Numerical illustrations of the findings are given via different types of function g .

[1]  Ryszard Rudnicki,et al.  Influence of stochastic perturbation on prey-predator systems. , 2007, Mathematical biosciences.

[2]  Qiuying Lu,et al.  Stability of SIRS system with random perturbations , 2009 .

[3]  A. Lahrouz,et al.  Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model , 2011 .

[4]  X. Mao,et al.  A stochastic model of AIDS and condom use , 2007 .

[5]  R. May,et al.  Population biology of infectious diseases: Part I , 1979, Nature.

[6]  Aadil Lahrouz,et al.  Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence , 2013 .

[7]  Andrei Korobeinikov,et al.  Lyapunov Functions and Global Stability for SIR and SIRS Epidemiological Models with Non-Linear Transmission , 2006, Bulletin of mathematical biology.

[8]  Daqing Jiang,et al.  Persistence and Nonpersistence of a Nonautonomous Stochastic Mutualism System , 2013 .

[9]  G. Yin,et al.  Stability of regime-switching diffusions , 2007 .

[11]  G. Serio,et al.  A generalization of the Kermack-McKendrick deterministic epidemic model☆ , 1978 .

[12]  M. El Jarroudi,et al.  Dynamics of hybrid switching diffusions SIRS model , 2016 .

[13]  Daqing Jiang,et al.  Long-time behavior of a stochastic SIR model , 2014, Appl. Math. Comput..

[14]  Adel Settati,et al.  Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation , 2014, Appl. Math. Comput..

[15]  Ryszard Rudnicki,et al.  Long-time behaviour of a stochastic prey–predator model , 2003 .

[16]  Barkat-e-Khuda,et al.  Awareness of sexually transmitted disease among women and service providers in rural Bangladesh , 1997, International journal of STD & AIDS.

[17]  Aadil Lahrouz,et al.  Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination , 2012, Appl. Math. Comput..

[18]  Yun Kang,et al.  A stochastic SIRS epidemic model with infectious force under intervention strategies , 2015 .

[19]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[20]  Adel Settati,et al.  Effects of stochastic perturbation on the SIS epidemic system , 2017, Journal of mathematical biology.

[21]  Y. Iwasa,et al.  Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models , 1986, Journal of mathematical biology.

[22]  Xuerong Mao,et al.  Robust stability and controllability of stochastic differential delay equations with Markovian switching , 2004, Autom..

[23]  Pasquale Vetro,et al.  Stability of a stochastic SIR system , 2005 .

[24]  H. Hethcote Qualitative analyses of communicable disease models , 1976 .

[25]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[26]  S. Wood Modelling and smoothing parameter estimation with multiple quadratic penalties , 2000 .

[27]  Adel Settati,et al.  Asymptotic properties of switching diffusion epidemic model with varying population size , 2013, Appl. Math. Comput..

[28]  C. Connell McCluskey,et al.  Global Analysis of Two Tuberculosis Models , 2004 .

[29]  Qun Liu,et al.  Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence , 2015 .

[30]  Mostafa Zahri,et al.  Barycentric interpolation of interface solution for solving stochastic partial differential equations on non-overlapping subdomains with additive multi-noises , 2018, Int. J. Comput. Math..

[31]  S. Rush,et al.  The complete heart-lead relationship in the Einthoven triangle. , 1968, The Bulletin of mathematical biophysics.

[32]  Yasuhiro Takeuchi,et al.  Global stability of an SIR epidemic model with time delays , 1995, Journal of mathematical biology.

[33]  R. May,et al.  Population biology of infectious diseases: Part II , 1979, Nature.

[34]  Jianbin Qiu,et al.  Fuzzy Adaptive Finite-Time Fault-Tolerant Control for Strict-Feedback Nonlinear Systems , 2020, IEEE Transactions on Fuzzy Systems.

[35]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[36]  S. Levin,et al.  The SIRC model and influenza A. , 2006, Mathematical biosciences.

[37]  Shigui Ruan,et al.  Dynamical behavior of an epidemic model with a nonlinear incidence rate , 2003 .

[38]  Meng Liu,et al.  Survival Analysis of Stochastic Competitive Models in a Polluted Environment and Stochastic Competitive Exclusion Principle , 2010, Bulletin of mathematical biology.

[39]  Adel Settati,et al.  Global dynamics of an epidemic model with incomplete recovery in a complex network , 2020, J. Frankl. Inst..

[40]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[41]  Daqing Jiang,et al.  Stationary distribution of a stochastic SIS epidemic model with vaccination , 2014 .

[42]  P. Tapaswi,et al.  An SIRS epidemic model of Japanese Encephalitis , 1994 .

[43]  Liangjian Hu,et al.  A Stochastic Differential Equation SIS Epidemic Model , 2011, SIAM J. Appl. Math..

[44]  R. Pettersson,et al.  Lévy noise perturbation for an epidemic model with impact of media coverage , 2019, Stochastics.

[45]  Weinian Zhang,et al.  Coexistence of Limit Cycles and Homoclinic Loops in a SIRS Model with a Nonlinear Incidence Rate , 2008, SIAM J. Appl. Math..

[46]  Paola Annoni,et al.  Sixth International Conference on Sensitivity Analysis of Model Output How to avoid a perfunctory sensitivity analysis , 2010 .

[47]  M. El Fatini,et al.  Stochastic analysis of a two delayed epidemic model incorporating Lévy processes with a general non-linear transmission , 2020, Stochastic Analysis and Applications.