Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement

In many image restoration/resolution enhancement applications, the blurring process, i.e., point spread function (PSF) of the imaging system, is not known or is known only to within a set of parameters. We estimate these PSF parameters for this ill-posed class of inverse problem from raw data, along with the regularization parameters required to stabilize the solution, using the generalized cross-validation method (GCV). We propose efficient approximation techniques based on the Lanczos algorithm and Gauss quadrature theory, reducing the computational complexity of the GCV. Data-driven PSF and regularization parameter estimation experiments with synthetic and real image sequences are presented to demonstrate the effectiveness and robustness of our method.

[1]  Russell C. Hardie,et al.  Joint MAP registration and high-resolution image estimation using a sequence of undersampled images , 1997, IEEE Trans. Image Process..

[2]  G. Golub,et al.  Some large-scale matrix computation problems , 1996 .

[3]  Kacem Chehdi,et al.  A comparative study between parametric blur estimation methods , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[4]  M. Hutchinson A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .

[5]  Douglas J. Granrath,et al.  Fusion of images on affine sampling grids , 1998 .

[6]  Peyman Milanfar,et al.  A wavelet-based interpolation-restoration method for superresolution (wavelet superresolution) , 2000 .

[7]  J. C. Dainty,et al.  Iterative blind deconvolution method and its applications , 1988 .

[8]  G. Golub,et al.  Generalized cross-validation for large scale problems , 1997 .

[9]  Peyman Milanfar,et al.  A computationally efficient superresolution image reconstruction algorithm , 2001, IEEE Trans. Image Process..

[10]  Yoram Bresler,et al.  Perfect blind restoration of images blurred by multiple filters: theory and efficient algorithms , 1999, IEEE Trans. Image Process..

[11]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[12]  Richard G. Lane,et al.  Automatic multidimensional deconvolution , 1987 .

[13]  Rama Chellappa,et al.  Data-driven multichannel superresolution with application to video sequences , 1999 .

[14]  B. C. McCallum Blind deconvolution by simulated annealing , 1990 .

[15]  R. Mersereau,et al.  Iterative methods for image deblurring , 1990 .

[16]  Russell M. Mersereau,et al.  Blur identification by the method of generalized cross-validation , 1992, IEEE Trans. Image Process..

[17]  J. Woods,et al.  Kalman filtering in two dimensions: Further results , 1981 .

[18]  Mark Andrews,et al.  Asymmetric iterative blind deconvolution of multiframe images , 1998, Optics & Photonics.

[19]  Robert L. Stevenson,et al.  Extraction of high-resolution frames from video sequences , 1996, IEEE Trans. Image Process..

[20]  Michael W. Marcellin,et al.  Iterative multiframe superresolution algorithms for atmospheric-turbulence-degraded imagery , 1998 .

[21]  Shigeru Ando,et al.  Blind superresolving image recovery from blur-invariant edges , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[22]  Timothy J. Schulz,et al.  Multiframe blind deconvolution of astronomical images , 1993 .

[23]  Bobby R. Hunt,et al.  Super‐resolution of images: Algorithms, principles, performance , 1995, Int. J. Imaging Syst. Technol..

[24]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[25]  Martin C. Richardson,et al.  High-performance Numeric Com-putation and Visualization Software , 1992 .

[26]  Subhasis Chaudhuri,et al.  A recursive algorithm for maximum likelihood-based identification of blur from multiple observations , 1998, IEEE Trans. Image Process..