Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green’s function approach compared to semiclassical methods

The thermal conductance of nanoscale phonon modes is typically calculated using the Boltzmann transport equation. A particular implementation of this method is the acoustic mismatch model (AMM) that compares impedance ratios at a mathematically abrupt transition between two equilibrium regions. The shortcomings of this model can be rectified by starting from a microscopic physics based equation describing the propagation of phonon waves across an extended junction, with carefully computed thermal boundary conditions on either side. The resulting nonequilibrium Green’s function (NEGF) formalism provides an accurate yet physically transparent machinery to calculate energy transfer, especially in nanosystems where the concept of thermal equilibrium breaks down readily. The purpose of this paper is to establish the NEGF formalism of thermal conductivity with a few simple examples and illustrate its particular strengths compared to the AMM.

[1]  D. G. Walker,et al.  Modeling of Thermoelectric Properties of Semi-Conductor Thin Films With Quantum and Scattering Effects , 2007 .

[2]  T. Beechem,et al.  Role of interface disorder on thermal boundary conductance using a virtual crystal approach , 2007 .

[3]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[4]  G. Kirczenow,et al.  Quantized Thermal Conductance of Dielectric Quantum Wires , 1998, cond-mat/9801238.

[5]  J. Burdett,et al.  Electronic structure and properties of solids , 1996 .

[6]  Timothy S. Fisher,et al.  The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport , 2007 .

[7]  Bangalore,et al.  Nonequilibrium Green's function formalism and the problem of bound states , 2005, cond-mat/0510303.

[8]  P. Hopkins,et al.  Relative Contributions of Inelastic and Elastic Diffuse Phonon Scattering to Thermal Boundary Conductance Across Solid Interfaces , 2009 .

[9]  Gang Chen Diffusion–transmission interface condition for electron and phonon transport , 2003 .

[10]  Timothy S. Fisher,et al.  Simulation of phonon transport across a non-polar nanowire junction using an atomistic Green’s function method , 2007 .

[11]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[12]  Patrick E. Phelan,et al.  A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance , 2001 .

[13]  T. Fisher,et al.  Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green’s Function Method , 2007 .

[14]  A. Ozpineci,et al.  Quantum effects of thermal conductance through atomic chains , 2001 .

[15]  Natalio Mingo,et al.  Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach , 2003 .

[16]  A. Majumdar Microscale Heat Conduction in Dielectric Thin Films , 1993 .

[17]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[18]  Nonequilibrium Green’s function approach to mesoscopic thermal transport , 2006, cond-mat/0605028.

[19]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[20]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[21]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[22]  Gang Chen,et al.  Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures , 1997 .

[23]  C. Kittel Introduction to solid state physics , 1954 .

[24]  P. Hopkins,et al.  Effects of Joint Vibrational States on Thermal Boundary Conductance , 2007 .

[25]  Gang Chen,et al.  Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires , 2004 .

[26]  Hartmut Haug,et al.  Quantum Kinetics in Transport and Optics of Semiconductors , 2004 .

[27]  Meir,et al.  Time-dependent transport in interacting and noninteracting resonant-tunneling systems. , 1994, Physical review. B, Condensed matter.

[28]  J. M. Taylor,et al.  Ab-initio Non-Equilibrium Green’s Function Formalism for Calculating Electron Transport in Molecular Devices , 2006 .

[29]  Resonant thermal transport in semiconductor barrier structures , 2004, cond-mat/0401315.

[30]  Gianluca Stefanucci,et al.  Introduction to the Keldysh Formalism , 2006 .

[31]  Nonequilibrium Green's function approach to phonon transport in defective carbon nanotubes. , 2006, Physical review letters.

[32]  Gang Chen Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons , 2005 .