Influence line- model correction approach for the assessment of engineering structures using novel monitoring techniques

In bridge engineering, maintenance strategies and thus budgetary demands are highly influenced by construction type and quality of design. Nowadays bridge owners and planners tend to include life-cycle cost analyses in their decision processes regarding the overall design trying to optimize structural reliability and durability within financial constraints. Smart permanent and short term monitoring can reduce the associated risk of new design concepts by observing the performance of structural components during prescribed time periods. The objectives of this paper are the discussion and analysis of influence line or influence field approaches in terms of (a) an efficient incorporation of monitoring information in the structural performance assessment, (b) an efficient characterization of performance indicators for the assessment of structures, (c) the ability of optimizing the positions of sensors of a monitoring system, and (d) the ability of checking the robustness of the monitoring systems applied to a structure. The proposed influence line- model correction approach has been applied to an integrative monitoring system that has been installed for the performance assessment of an existing three-span jointless bridge.

[1]  Dan M. Frangopol,et al.  Bridge Reliability Assessment Based on Monitoring , 2008 .

[2]  Dan M. Frangopol,et al.  Optimization of retrofitting distortion-induced fatigue cracking of steel bridges using monitored data under uncertainty , 2010 .

[3]  Dan M. Frangopol,et al.  Optimization of bridge maintenance strategies based on structural health monitoring information , 2011 .

[4]  Dan M. Frangopol,et al.  Bridge Safety Evaluation Based on Monitored Live Load Effects , 2009 .

[5]  Konrad Bergmeister,et al.  AIFIT – Anwenderorientierte Identifikation für Ingenieurtragwerke. Versuchsgestützte Steifigkeitsanalysen , 2007 .

[6]  Dan M. Frangopol,et al.  Optimization of bridge maintenance strategies based on multiple limit states and monitoring , 2010 .

[7]  Dan M. Frangopol,et al.  Statistical, Probabilistic and Decision Analysis Aspects Related to the Efficient Use of Structural Monitoring Systems , 2008 .

[8]  Charles R. Farrar,et al.  Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review , 1996 .

[9]  Alfred Strauss,et al.  Monitoring based analysis of a concrete frame bridge 'Marktwasser Bridge' , 2010 .

[10]  Shamim N. Pakzad,et al.  Static and dynamic model validation and damage detection using wireless sensor network , 2010 .

[11]  Long Chen FINITE ELEMENT METHOD , 2013 .

[12]  Konrad Bergmeister,et al.  Ansatz zur Beurteilung von chloridbelasteten Stahlbetonbauwerken mit Bewertung der Restlebensdauer / Approach for the assessment of concrete structures subjected to chloride induced deteriotation , 2010 .

[13]  R Veit-Egerer,et al.  Determination of a performance baseline for lifecycle consideration of bridges , 2010 .

[14]  Konrad Bergmeister,et al.  Monitoring und Strukturidentifikation von Betonbrücken , 2010 .

[15]  Dan M. Frangopol,et al.  Monitoring and influence lines based performance indicators , 2011 .

[16]  Dan M. Frangopol,et al.  Optimal planning of structural performance monitoring based on reliability importance assessment , 2010 .

[17]  Dan M. Frangopol,et al.  Monitoring based evaluation of design criteria for concrete frame bridges , 2010 .

[18]  Konrad Zilch,et al.  Monitoring im Betonbau , 2009 .

[20]  Dan M. Frangopol,et al.  Application of the statistics of extremes to the reliability assessment and performance prediction of monitored highway bridges , 2011, Structures and Infrastructure Systems.

[21]  R Geier The benefit of monitoring for bridge maintenance , 2010 .

[22]  Dan M. Frangopol,et al.  Bridge System Performance Assessment from Structural Health Monitoring: A Case Study , 2009 .

[23]  Dan M. Frangopol,et al.  Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data , 2010 .

[24]  Dan M. Frangopol,et al.  Cost-Effective Lifetime Structural Health Monitoring Based on Availability , 2011 .

[25]  Kurt Hirschfeld,et al.  Baustatik : Theorie und Beispiele , 1969 .

[26]  Dan M. Frangopol,et al.  Life-cycle cost and performance prediction: Role of structural health monitoring , 2009 .

[27]  Ton Vrouwenvelder,et al.  The JCSS probabilistic model code , 1997 .

[28]  Konrad Bergmeister,et al.  Modellkorrekturfaktoren als “Performance Indikatoren” für die Langzeitbewertung der integralen Marktwasserbrücke S33.24 , 2011 .

[29]  Konrad Bergmeister,et al.  System‐ und Schadensidentifikation von Betontragstrukturen , 2009 .

[30]  Dan M. Frangopol,et al.  Cost-Based Optimum Scheduling of Inspection and Monitoring for Fatigue-Sensitive Structures under Uncertainty , 2011 .

[31]  Dan M. Frangopol,et al.  Inclusion of Crawl Tests and Long-Term Health Monitoring in Bridge Serviceability Analysis , 2010 .

[32]  Dan M. Frangopol,et al.  Use of monitoring extreme data for the performance prediction of structures: Bayesian updating , 2008 .

[33]  Dan M. Frangopol,et al.  Fatigue reliability assessment of retrofitted steel bridges integrating monitored data , 2010 .

[34]  Konrad Bergmeister,et al.  Structural assessment and reliability analysis for existing engineering structures, applications for real structures , 2009 .

[35]  Dan M. Frangopol,et al.  Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges 1 , 2011, Structures and Infrastructure Systems.

[36]  Dan M. Frangopol,et al.  Use of Monitoring Extreme Data for the Performance Prediction of Structures: General Approach , 2008 .

[37]  D. Inaudi Optimal Design of Bridge SHM Systems Based on Risk and Opportunity Analysis , 2010 .

[38]  Konrad Bergmeister,et al.  Stochastische Parameteridentifikation bei Konstruktionsbeton für die Betonerhaltung , 2004 .

[39]  Dan M. Frangopol,et al.  Optimization of Bridge Management under Budget Constraints , 2010 .

[40]  David Lehký,et al.  ANN inverse analysis based on stochastic small-sample training set simulation , 2006, Eng. Appl. Artif. Intell..