Multiobjective GP for Human-Understandable Models: A Practical Application

The work presented in this chapter is concerned with the identification and modelling of nonlinear dynamical systems using multiobjective evolutionary algorithms (MOEAs). This problem involves the processes of structure selection, parameter estimation, model performance and model validation and defines a complex solution space. Evolutionary algorithms (EAs), in particular genetic programming (GP), are found to provide a way of evolving models to solve this identification and modelling problem, and their use is extended to encompass multiobjective functions. Multiobjective genetic programming (MOGP) is then applied to multiple conflicting objectives in order to yield a set of simple and valid human-understandable models which can reproduce the behaviour of a given unknown system.

[1]  Sheng Chen,et al.  Representations of non-linear systems: the NARMAX model , 1989 .

[2]  J. K. Kinnear,et al.  Advances in Genetic Programming , 1994 .

[3]  Eric V. Siegel,et al.  Genetically optimizing the speed of programs evolved to play tetris , 1996 .

[4]  S. Billings,et al.  Least squares parameter estimation algorithms for non-linear systems , 1984 .

[5]  DaeEun Kim,et al.  Structural Risk Minimization on Decision Trees Using an Evolutionary Multiobjective Optimization , 2004, EuroGP.

[6]  Lourdes Araujo,et al.  Multiobjective Genetic Programming for Natural Language Parsing and Tagging , 2006, PPSN.

[7]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[8]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[9]  M. Kimura Evolutionary Rate at the Molecular Level , 1968, Nature.

[10]  S. A. Billings,et al.  Structure Detection and Model Validity Tests in the Identification of Nonlinear Systems , 1983 .

[11]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[12]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[13]  Hitoshi Iba,et al.  Genetic programming using a minimum description length principle , 1994 .

[14]  Oscar Cordón,et al.  Evolutionary Learning of Boolean Queries by Multiobjective Genetic Programming , 2002, PPSN.

[15]  Lothar Thiele,et al.  Multiobjective genetic programming: reducing bloat using SPEA2 , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[16]  Yang Zhang,et al.  Evolving optimal feature extraction using multi-objective genetic programming: a methodology and preliminary study on edge detection , 2005, GECCO '05.

[17]  Xiaodong Li,et al.  Multiobjective parsimony enforcement for superior generalisation performance , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[18]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[19]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[20]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[21]  Peter J. Fleming,et al.  An Evolutionary Approach to Non-Linear Polynomial System Identification , 1997 .

[22]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[23]  Edgar Galván López,et al.  The Importance of Neutral Mutations in GP , 2006, PPSN.