Testing optically stimulated luminescence dating of sand-sized quartz and feldspar from fluvial deposits

[1]  A. Murray,et al.  Optically stimulated luminescence dates for Late Pleistocene Sediments from Stensnæs, Northern Jutland, Denmark☆ , 2001 .

[2]  H. Bray,et al.  Optical resetting in large drainage basins: tests of zeroing assumptions using single-aliquot procedures , 2001 .

[3]  A. Murray,et al.  The potential of OSL and TL for dating lateglacial and Holocene dune sands tested with independent age control of the Laacher See tephra (12 880 a) at the Section "Mainz-Gonsenheim" , 2001 .

[4]  A. Murray,et al.  Luminescence dating of Holocene aeolian sand movement, Thy, Denmark , 2001 .

[5]  M. Lamothe,et al.  Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating , 2001 .

[6]  H. Wolf,et al.  Response of the Rhine–Meuse system (west-central Netherlands) to the last Quaternary glacio-eustatic cycles: a first assessment , 2000 .

[7]  A. Murray,et al.  The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar , 2000 .

[8]  M. Krbetschek,et al.  The basic principle of radioluminescence dating and a localized transition model , 2000 .

[9]  E. Rhodes Observations of thermal transfer OSL signals in glacigenic quartz , 2000 .

[10]  A. Murray,et al.  Advances in luminescence instrument systems , 2000 .

[11]  A. Murray,et al.  Underestimation of equivalent dose in single-aliquot optical dating of feldspars caused by preheating , 2000 .

[12]  E. Stouthamer,et al.  Late Weichselian and Holocene palaeogeography of the Rhine–Meuse delta, The Netherlands , 2000 .

[13]  J. Wallinga,et al.  The effect of optical absorption on the infrared stimulated luminescence age obtained on coarse-grain feldspar , 2000 .

[14]  A. Murray,et al.  Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol , 2000 .

[15]  B. Kromer,et al.  Paleo-environment and radiocarbon calibration as derived from Lateglacial/Early Holocene tree-ring chronologies , 1999 .

[16]  Hans-Ulrich Schmincke,et al.  Evolution and environmental impacts of the eruption of Laacher See Volcano (Germany) 12,900 a BP , 1999 .

[17]  M. Lamothe,et al.  A solution to anomalous fading and age shortfalls in optical dating of feldspar minerals , 1999 .

[18]  G. Caitcheon,et al.  The distribution of apparent dose as determined by Optically Stimulated Luminescence in small aliquots of fluvial quartz: Implications for dating young sediments , 1998 .

[19]  A. Murray,et al.  Measurement of the equivalent dose in quartz using a regenerative-dose single-aliquot protocol , 1998 .

[20]  M. Tite,et al.  OPTICAL DATING RESULTS FOR BRITISH ARCHAEOLOGICAL SEDIMENTS , 1997 .

[21]  A. Murray Developments in optically stimulated luminescence and photo-transferred thermoluminescence dating of young sediments: Application to a 2000-year sequence of flood deposits , 1996 .

[22]  G. Duller Luminescence dating using single aliquots : methods and applications , 1995 .

[23]  J. Prescott,et al.  Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations , 1994 .

[24]  Sheng‐Hua Li Optical dating: Insufficiently bleached sediments , 1994 .

[25]  N. Spooner The anomalous fading of infrared-stimulated luminescence from feldspars , 1994 .

[26]  T. Törnqvist Holocene Alternation of Meandering and Anastomosing Fluvial Systems in the Rhine-Meuse Delta (Central Netherlands) Controlled by Sea-Level Rise and Subsoil Erodibility , 1993 .

[27]  S. Stokes,et al.  Optical Dating of Holocene Dune Sands in the Ferris Dune Field, Wyoming , 1993, Quaternary Research.

[28]  Paul Martin,et al.  Analysis for naturally occuring radionuclides at environmental concentrations by gamma spectrometry , 1987 .

[29]  V. Mejdahl THERMOLUMINESCENCE DATING: BETA‐DOSE ATTENUATION IN QUARTZ GRAINS , 1979 .

[30]  A. Wintle,et al.  Anomalous Fading of Thermo-luminescence in Mineral Samples , 1973, Nature.

[31]  D. Zimmerman THERMOLUMINESCENT DATING USING FINE GRAINS FROM POTTERY , 1971 .

[32]  A. Murray,et al.  PRECISION AND ACCURACY IN THE OPTICALLY STIMULATED LUMINESCENCE DATING OF SEDIMENTARY QUARTZ: A STATUS REVIEW , 2002 .

[33]  J. Feathers,et al.  An introduction to optical dating , 2000 .

[34]  Hans Middelkoop,et al.  Embanked floodplains in the Netherlands : geomorphological evolution over various time scales , 1997 .

[35]  H. Weerts Complex confining layers : architecture and hydraulic properties of Holocene and Late Weichselian deposits in the fluvial Rhine-Meuse delta, the Netherlands , 1996 .

[36]  A. Murray,et al.  The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments , 1996 .

[37]  G. Caitcheon,et al.  Measurement of equivalent doses in quartz from contemporary water-lain sediments using optically stimulated luminescence , 1995 .

[38]  L. Bøtter-Jensen,et al.  Luminescence dating of archaeological materials using a new technique based on single aliquot measurements , 1994 .

[39]  G. Duller Luminescence dating using feldspars: a test case from southern North Island, New Zealand , 1994 .

[40]  M. Bierkens,et al.  How Smooth Should Curves Be for Calibrating Radiocarbon Ages? , 1994, Radiocarbon.

[41]  J Vanderplicht,et al.  THE GRONINGEN RADIOCARBON CALIBRATION PROGRAM , 1993 .

[42]  J. van der Plicht The Groningen Radiocarbon Calibration Program , 1993, Radiocarbon.

[43]  K. van der Borg,et al.  Accurate Dating of Organic Deposits by AMS 14C Measurement of Macrofossils , 1992, Radiocarbon.

[44]  G. Duller Equivalent dose determination using single aliquots , 1991 .

[45]  L. Bøtter-Jensen,et al.  Determination of Potassium in Feldspars by Beta Counting Using a GM Multicounter System , 1985 .