On the approximation of Maxwell''s eigenproblem in general 2D domains
暂无分享,去创建一个
[1] P. Silvester,et al. Numerical Solution of Dielectric Loaded Waveguides: I-Finite-Element Analysis , 1970 .
[2] Jean-Claude Nédélec,et al. Éléments finis mixtes incompressibles pour l'équation de Stokes dans ℝ3 , 1982 .
[3] J. B. Davies,et al. Finite Element Analysis of All Modes in Cavities with Circular Symmetry , 1982 .
[4] B. M. A. Rahman,et al. Penalty Function Improvement of Waveguide Solution by Finite Elements , 1984 .
[5] F. Kikuchi,et al. Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism , 1987 .
[6] A. Bossavit. Solving Maxwell equations in a closed cavity, and the question of 'spurious modes' , 1990 .
[7] J. P. Webb. Edge Elements and What They Can Do for You , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.
[8] K. Bathe,et al. A mixed displacement-based finite element formulation for acoustic fluid-structure interaction , 1995 .
[9] K. Bathe. Finite Element Procedures , 1995 .
[10] K. Bathe,et al. DISPLACEMENT/PRESSURE BASED MIXED FINITE ELEMENT FORMULATIONS FOR ACOUSTIC FLUID–STRUCTURE INTERACTION PROBLEMS , 1997 .
[11] Klaus-Jürgen Bathe,et al. On Mixed Elements for Acoustic Fluid-Structure Interactions , 1997 .
[12] Daniele Boffi,et al. Approximation of grad-div operator in non-convex domains , 1999 .
[13] M. Costabel,et al. Maxwell and Lamé eigenvalues on polyhedra , 1999 .
[14] D. Boffi,et al. A remark on spurious eigenvalues in a square , 1999 .
[15] P. Arbenz,et al. Eigenvalue solvers for electromagnetic fields in cavities , 1999 .
[16] D. Boffi,et al. Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .
[17] Daniele Boffi,et al. Fortin operator and discrete compactness for edge elements , 2000, Numerische Mathematik.
[18] M. Costabel,et al. Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .
[19] Daniele Boffi,et al. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..