Laser-ablative engineering of phase singularities in plasmonic metamaterial arrays for biosensing applications

By using methods of laser-induced transfer combined with nanoparticle lithography, we design and fabricate large-area gold nanoparticle-based metamaterial arrays exhibiting extreme Heaviside-like phase jumps in reflected light due to a strong diffractive coupling of localized plasmons. When employed in sensing schemes, these phase singularities provide the sensitivity of 5 × 104 deg. of phase shift per refractive index unit change that is comparable with best values reported for plasmonic biosensors. The implementation of sensor platforms on the basis of such metamaterial arrays promises a drastic improvement of sensitivity and cost efficiency of plasmonic biosensing devices.

[1]  Boris N. Chichkov,et al.  Laser fabrication of large-scale nanoparticle arrays for sensing applications. , 2011, ACS nano.

[2]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.

[3]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[4]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[5]  A. I. Kuznetsov,et al.  Laser fabrication of 2D and 3D metal nanoparticle structures and arrays. , 2010, Optics express.

[6]  Petr I. Nikitin,et al.  Surface plasmon resonance interferometer for bio- and chemical-sensors , 1998 .

[7]  Wei Zhou,et al.  Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. , 2011, Nature nanotechnology.

[8]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[9]  W. Barnes,et al.  Collective resonances in gold nanoparticle arrays. , 2008, Physical review letters.

[10]  Sergiy Patskovsky,et al.  Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. , 2009, Optics express.

[11]  B. Liedberg,et al.  Surface plasmon resonance for gas detection and biosensing , 1983 .

[12]  V. Kravets,et al.  Sensitivity of collective plasmon modes of gold nanoresonators to local environment. , 2010, Optics letters.

[13]  George C Schatz,et al.  Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. , 2004, The Journal of chemical physics.

[14]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[15]  Petr I. Nikitin,et al.  Phase jumps and interferometric surface plasmon resonance imaging , 1999 .

[16]  B. Chichkov,et al.  Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications , 2009 .

[17]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[18]  Ho-Pui Ho,et al.  Phase‐sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications , 2012 .

[19]  Boris N. Chichkov,et al.  Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions , 2012 .

[20]  V. Kravets,et al.  Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. , 2013, Nature materials.

[21]  W. Barnes,et al.  Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate , 2010, 1007.4428.

[22]  Tuan Vo-Dinh,et al.  Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes. , 2005, Analytical chemistry.

[23]  Clement E. Furlong,et al.  A commercial solution for surface plasmon sensing , 1996 .

[24]  Deepak Uttamchandani,et al.  Optical chemical sensing employing surface plasmon resonance , 1988 .

[25]  R. Schasfoort,et al.  TUTORIAL REVIEW , 2001 .

[26]  Petr I. Nikitin,et al.  Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrast , 1999 .