Scattering and absorbing aerosols in the climate system

[1]  Clear-sky Direct Aerosol Radiative Forcing Uncertainty Associated with Aerosol Optical Properties Based on CMIP6 models , 2022, Journal of Climate.

[2]  J. Lelieveld,et al.  Impact of reduced emissions on direct and indirect aerosol radiative forcing during COVID–19 lockdown in Europe , 2021 .

[3]  Evaluation of Aerosol Properties Observed by DSCOVR/EPIC Instrument From the Earth‐Sun Lagrange 1 Orbit , 2021, Journal of Geophysical Research: Atmospheres.

[4]  O. Hasekamp,et al.  AEROCOM and AEROSAT AAOD and SSA study – Part 1: Evaluation and intercomparison of satellite measurements , 2021 .

[5]  H. Matsui,et al.  Aerosol radiative forcings induced by substantial changes in anthropogenic emissions in China from 2008 to 2016 , 2021, Atmospheric Chemistry and Physics.

[6]  G. Stenchikov,et al.  Synergy processing of diverse ground-based remote sensing and in situ data using the GRASP algorithm: applications to radiometer, lidar and radiosonde observations , 2021, Atmospheric Measurement Techniques.

[7]  G. Vecchi,et al.  Compensation Between Cloud Feedback and Aerosol‐Cloud Interaction in CMIP6 Models , 2021, Geophysical Research Letters.

[8]  O. Hasekamp,et al.  Assimilating aerosol optical properties related to size and absorption from POLDER/PARASOL with an ensemble data assimilation system , 2021, Atmospheric Chemistry and Physics.

[9]  V. Ramaswamy,et al.  Assessing the Influence of COVID‐19 on the Shortwave Radiative Fluxes Over the East Asian Marginal Seas , 2021, Geophysical research letters.

[10]  S. Coats,et al.  Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather , 2021, Nature Communications.

[11]  S. Davis,et al.  Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China , 2020, National science review.

[12]  D. Winker,et al.  Uncertainty in Observational Estimates of the Aerosol Direct Radiative Effect and Forcing , 2019, Journal of Climate.

[13]  Hydrological Aspects of Climate Change , 2021, Springer Transactions in Civil and Environmental Engineering.

[14]  M. Chin,et al.  AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations , 2021 .

[15]  D. Tanré,et al.  Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring , 2020, Earth System Science Data.

[16]  P. Yan,et al.  Development of a three-dimensional variational assimilation system for lidar profile data based on a size-resolved aerosol model in WRF–Chem model v3.9.1 and its application in PM2.5 forecasts across China , 2020 .

[17]  O. Hasekamp,et al.  Supplementary material to "AEROCOM/AEROSAT AAOT & SSA study, part I: evaluation and intercomparison of satellite measurements" , 2020 .

[18]  P. Forster,et al.  Climate Impacts of COVID‐19 Induced Emission Changes , 2020, Geophysical Research Letters.

[19]  M. Tarn,et al.  A Major Combustion Aerosol Event Had a Negligible Impact on the Atmospheric Ice‐Nucleating Particle Population , 2020, Journal of Geophysical Research: Atmospheres.

[20]  M. Komppula,et al.  Aerosol type classification analysis using EARLINET multiwavelength and depolarization lidar observations , 2020, Atmospheric Chemistry and Physics.

[21]  N. Abraham,et al.  Minimal Climate Impacts From Short‐Lived Climate Forcers Following Emission Reductions Related to the COVID‐19 Pandemic , 2020, Geophysical research letters.

[22]  T. Storelvmo,et al.  Global Radiative Impacts of Black Carbon Acting as Ice Nucleating Particles , 2020, Geophysical research letters.

[23]  A. Stohl,et al.  Changes in black carbon emissions over Europe due to COVID-19 lockdowns , 2020, Atmospheric Chemistry and Physics.

[24]  T. Painter,et al.  Dust dominates high-altitude snow darkening and melt over high-mountain Asia , 2020, Nature Climate Change.

[25]  J. Attie,et al.  Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations , 2020 .

[26]  J. Abatzoglou,et al.  Vegetation fires in the Anthropocene , 2020, Nature Reviews Earth & Environment.

[27]  J. Pichon,et al.  A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories , 2020, Atmospheric Measurement Techniques.

[28]  Christopher J. Smith,et al.  Current and future global climate impacts resulting from COVID-19 , 2020, Nature Climate Change.

[29]  S. Malyshev,et al.  The GFDL Global Atmospheric Chemistry-Climate Model AM4.1: Model Description and Simulation Characteristics , 2020 .

[30]  J. Randerson,et al.  The COVID-19 lockdowns: a window into the Earth System , 2020, Nature Reviews Earth & Environment.

[31]  Cloudy-sky contributions to the direct aerosol effect , 2020 .

[32]  D. Winker,et al.  Aerosol Direct Radiative Effect Sensitivity Analysis , 2020, Journal of Climate.

[33]  K. Taylor,et al.  Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models , 2020, Science Advances.

[34]  Yuk L. Yung,et al.  Impact of Aerosol Vertical Distribution on Aerosol Optical Depth Retrieval from Passive Satellite Sensors , 2020, Remote. Sens..

[35]  P. Colarco,et al.  Optimized profile retrievals of aerosol microphysical properties from simulated spaceborne multiwavelength Lidar , 2020 .

[36]  U. Lohmann,et al.  Coupling aerosols to (cirrus) clouds in the global EMAC-MADE3 aerosol–climate model , 2020 .

[37]  M. Mills,et al.  Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison , 2020, Atmospheric Chemistry and Physics.

[38]  J. Gregory,et al.  Aerosol‐Forced AMOC Changes in CMIP6 Historical Simulations , 2020, Geophysical Research Letters.

[39]  J. Mülmenstädt,et al.  Bounding Global Aerosol Radiative Forcing of Climate Change , 2020, Reviews of geophysics.

[40]  J. Lamarque,et al.  Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models , 2020, Atmospheric Chemistry and Physics.

[41]  Jonathan H. Jiang,et al.  Reduced European aerosol emissions suppress winter extremes over northern Eurasia , 2020, Nature Climate Change.

[42]  P. Good,et al.  Historical and future changes in air pollutants from CMIP6 models , 2020, Atmospheric Chemistry and Physics.

[43]  K. Taylor,et al.  Causes of Higher Climate Sensitivity in CMIP6 Models , 2020, Geophysical Research Letters.

[44]  Alexander Smirnov,et al.  The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2 , 2020, Atmospheric Measurement Techniques.

[45]  Jing Li,et al.  Pollution Trends in China from 2000 to 2017: A Multi-Sensor View from Space , 2020, Remote. Sens..

[46]  Z. Zeng,et al.  Constraining the vertical distribution of coastal dust aerosol using OCO-2 O2 A-band measurements , 2019, Remote Sensing of Environment.

[47]  J. Mülmenstädt,et al.  Surprising similarities in model and observational aerosol radiative forcing estimates , 2019, Atmospheric chemistry and physics.

[48]  M. Yoshioka,et al.  The value of remote marine aerosol measurements for constraining radiative forcing uncertainty , 2019, Atmospheric Chemistry and Physics.

[49]  W. Petersen,et al.  The NASA Decadal Survey Observing-System Study for Aerosols and Clouds, Convection, and Precipitation (ACCP) , 2019 .

[50]  Johannes Quaas,et al.  Analysis of polarimetric satellite measurements suggests stronger cooling due to aerosol-cloud interactions , 2019, Nature Communications.

[51]  N. Lau,et al.  A Model Investigation of Aerosol‐Induced Changes in the East Asian Winter Monsoon , 2019, Geophysical Research Letters.

[52]  M. Christensen,et al.  Weak average liquid-cloud-water response to anthropogenic aerosols , 2019, Nature.

[53]  J. Penner,et al.  Global Modeling of Secondary Organic Aerosol With Organic Nucleation , 2019, Journal of Geophysical Research: Atmospheres.

[54]  Jun Wang,et al.  Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen absorption bands: hourly results from EPIC/DSCOVR in deep space , 2019, Atmospheric Measurement Techniques.

[55]  Otto P. Hasekamp,et al.  Aerosol measurements by SPEXone on the NASA PACE mission: expected retrieval capabilities , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[56]  P. Colarco,et al.  Retrievals of aerosol single scattering albedo by multiwavelength lidar measurements: Evaluations with NASA Langley HSRL-2 during discover-AQ field campaigns , 2019, Remote Sensing of Environment.

[57]  T. Takemura,et al.  Perturbations to Global Energy Budget Due to Absorbing and Scattering Aerosols , 2019, Journal of Geophysical Research: Atmospheres.

[58]  Sonoyo Mukai,et al.  Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[59]  M. Lawrence,et al.  An overview of airborne measurement in Nepal – Part 1: Vertical profile of aerosol size, number, spectral absorption, and meteorology , 2019, Atmospheric Chemistry and Physics.

[60]  W. Collins,et al.  Radiative Forcing of Climate: The Historical Evolution of the Radiative Forcing Concept, the Forcing Agents and their Quantification, and Applications , 2019, Meteorological Monographs.

[61]  K. Calvin,et al.  Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century , 2018, Geoscientific Model Development.

[62]  T. Andrews,et al.  Understanding Rapid Adjustments to Diverse Forcing Agents , 2018, Geophysical research letters.

[63]  Ruediger Lang,et al.  The multi-viewing multi-channel multi-polarisation imager – Overview of the 3MI polarimetric mission for aerosol and cloud characterization , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[64]  J. Penner,et al.  Anthropogenic Aerosol Indirect Effects in Cirrus Clouds , 2018, Journal of geophysical research. Atmospheres : JGR.

[65]  E. Kort,et al.  Constraining Aerosol Vertical Profile in the Boundary Layer Using Hyperspectral Measurements of Oxygen Absorption , 2018, Geophysical Research Letters.

[66]  M. Chin,et al.  Retrieval of desert dust and carbonaceous aerosol emissions over Africa from POLDER/PARASOL products generated by the GRASP algorithm , 2018, Atmospheric Chemistry and Physics.

[67]  Vincent Noel,et al.  The diurnal cycle of cloud profiles over land and ocean between 51° S and 51° N, seen by the CATS spaceborne lidar from the International Space Station , 2018, Atmospheric Chemistry and Physics.

[68]  G. Hegerl,et al.  Detectable Impact of Local and Remote Anthropogenic Aerosols on the 20th Century Changes of West African and South Asian Monsoon Precipitation , 2018 .

[69]  B. Samset,et al.  Aerosol Absorption: Progress Towards Global and Regional Constraints , 2018, Current Climate Change Reports.

[70]  T. Nakajima,et al.  Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model , 2018, Nature Communications.

[71]  N. Mahowald,et al.  Global and regional importance of the direct dust-climate feedback , 2018, Nature Communications.

[72]  T. Andrews,et al.  Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations , 2017, Journal of geophysical research. Atmospheres : JGR.

[73]  Zhanqing Li,et al.  Aerosol and boundary-layer interactions and impact on air quality , 2017 .

[74]  P. Pilewskie,et al.  SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses. , 2017, Bulletin of The American Meteorological Society - (BAMS).

[75]  T. Tanaka,et al.  JRAero: the Japanese Reanalysis for Aerosol v1.0 , 2017 .

[76]  B. Soden,et al.  Hemispheric climate shifts driven by anthropogenic aerosol–cloud interactions , 2017 .

[77]  J. Lelieveld,et al.  Aerosol physicochemical effects on CCN activation simulated with the chemistry-climate model EMAC , 2017 .

[78]  C. Flynn,et al.  The MERRA-2 Aerosol Reanalysis, 1980 - onward, Part I: System Description and Data Assimilation Evaluation. , 2017, Journal of climate.

[79]  Olga V. Kalashnikova,et al.  Coupled retrieval of aerosol properties and land surface reflection using the Airborne Multiangle SpectroPolarimetric Imager , 2017 .

[80]  A. Robock,et al.  LALINET: The First Latin American–Born Regional Atmospheric Observational Network , 2017 .

[81]  A. Ding,et al.  Anthropogenic aerosol effects on East Asian winter monsoon: The role of black carbon‐induced Tibetan Plateau warming , 2017 .

[82]  Jianlin Hu,et al.  Simulated impacts of direct radiative effects of scattering and absorbing aerosols on surface layer aerosol concentrations in China during a heavily polluted event in February 2014 , 2017 .

[83]  S. Ghan,et al.  Constraining the instantaneous aerosol influence on cloud albedo , 2017, Proceedings of the National Academy of Sciences.

[84]  K. Carslaw,et al.  Aerosols in the Pre-industrial Atmosphere , 2017, Current Climate Change Reports.

[85]  A. Gettelman,et al.  Improvements in Global Climate Model Microphysics Using a Consistent Representation of Ice Particle Properties , 2017 .

[86]  Richard H. Moore,et al.  Information content and sensitivity of the 3 β + 2 α lidar measurement system for aerosol microphysical retrievals , 2016 .

[87]  Adam A. Scaife,et al.  Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown , 2016 .

[88]  Brian Cairns,et al.  Passive remote sensing of aerosol layer height using near‐UV multiangle polarization measurements , 2016, Geophysical research letters.

[89]  C. Bretherton,et al.  Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system , 2016, Proceedings of the National Academy of Sciences.

[90]  J. A. Navarro,et al.  Amplification of Arctic warming by past air pollution reductions in Europe , 2016 .

[91]  Tong Zhu,et al.  Enhanced haze pollution by black carbon in megacities in China , 2016 .

[92]  Robert J. Allen,et al.  An increase in aerosol burden and radiative effects in a warmer world , 2016 .

[93]  R. Martin,et al.  Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects , 2016 .

[94]  R. Park,et al.  Effects of sulfate aerosol forcing on East Asian summer monsoon for 1985–2010 , 2016 .

[95]  Kenneth S. Carslaw,et al.  On the relationship between aerosol model uncertainty and radiative forcing uncertainty , 2016, Proceedings of the National Academy of Sciences.

[96]  Riko Oki,et al.  The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation , 2015 .

[97]  Xiangao Xia,et al.  Ground-based aerosol climatology of China: aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013 , 2015 .

[98]  S. Xie,et al.  Ocean mediation of tropospheric response to reflecting and absorbing aerosols , 2015 .

[99]  Barbara J. Gaitley,et al.  An analysis of global aerosol type as retrieved by MISR , 2015 .

[100]  Ilan Koren,et al.  Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect , 2015, Heliyon.

[101]  Claudio Carnevale,et al.  Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models , 2014 .

[102]  Oleg Dubovik,et al.  Recent trends in aerosol optical properties derived from AERONET measurements , 2014 .

[103]  B. Samset,et al.  Standard climate models radiation codes underestimate black carbon radiative forcing , 2014 .

[104]  J. Seinfeld,et al.  Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds , 2014 .

[105]  G. Hegerl,et al.  Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols , 2014 .

[106]  Yi Ming,et al.  Contrasting Climate Responses to the Scattering and Absorbing Features of Anthropogenic Aerosol Forcings , 2014 .

[107]  W. Landuyt,et al.  The vertical distribution of black carbon in CMIP5 models: Comparison to observations and the importance of convective transport , 2014 .

[108]  V. Ramaswamy,et al.  Contribution of local and remote anthropogenic aerosols to the twentieth century weakening of the South Asian Monsoon , 2014 .

[109]  S. Sherwood,et al.  Climate Effects of Aerosol-Cloud Interactions , 2014, Science.

[110]  G. Mann,et al.  Large contribution of natural aerosols to uncertainty in indirect forcing , 2013, Nature.

[111]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[112]  S. Xie,et al.  Similar spatial patterns of climate responses to aerosol and greenhouse gas changes , 2013 .

[113]  Michael J. Garay,et al.  Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX) , 2013, Remote. Sens..

[114]  P. Stier,et al.  Satellite observations of cloud regime development: the role of aerosol processes , 2013 .

[115]  T. Takemura,et al.  A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models , 2013 .

[116]  Erik Swietlicki,et al.  Warming-induced increase in aerosol number concentration likely to moderate climate change , 2013 .

[117]  Jean-Christophe Golaz,et al.  The roles of aerosol direct and indirect effects in past and future climate change , 2013 .

[118]  M. Chin,et al.  Radiative forcing in the ACCMIP historical and future climate simulations , 2013 .

[119]  B. Anderson,et al.  Airborne observations of aerosol extinction by in situ and remote‐sensing techniques: Evaluation of particle hygroscopicity , 2013 .

[120]  A. Kirkevåg,et al.  Climate‐induced changes in sea salt aerosol number emissions: 1870 to 2100 , 2013 .

[121]  Timo Nousiainen,et al.  Comparison of scattering by different nonspherical, wavelength-scale particles , 2012 .

[122]  T. Diehl,et al.  Black carbon vertical profiles strongly affect its radiative forcing uncertainty , 2012 .

[123]  Paul Ginoux,et al.  Sensitivity of scattering and absorbing aerosol direct radiative forcing to physical climate factors , 2012 .

[124]  A. Lacis,et al.  Aerosol retrievals from channel-1 and -2 AVHRR radiances: Long-term trends updated and revisited , 2012 .

[125]  R. Gautam,et al.  Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010 , 2012 .

[126]  T. Petäjä,et al.  Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon , 2012, Science.

[127]  J. Penner,et al.  Consistent estimates from satellites and models for the first aerosol indirect forcing , 2012 .

[128]  Hiren Jethva,et al.  Retrieval of Aerosol Optical Depth above Clouds from OMI Observations: Sensitivity Analysis and Case Studies , 2012 .

[129]  D. Hartmann,et al.  Global‐mean precipitation and black carbon in AR4 simulations , 2012 .

[130]  Ralph A. Kahn,et al.  Reducing the Uncertainties in Direct Aerosol Radiative Forcing , 2012, Surveys in Geophysics.

[131]  V. Ramaswamy,et al.  Anthropogenic Aerosols and the Weakening of the South Asian Summer Monsoon , 2011, Science.

[132]  Eric M. Wilcox,et al.  Direct and semi-direct radiative forcing of smoke aerosols over clouds , 2011 .

[133]  Alexander Smirnov,et al.  Reduction of aerosol absorption in Beijing since 2007 from MODIS and AERONET , 2011 .

[134]  Antony D. Clarke,et al.  Light-absorbing impurities in Arctic snow , 2010 .

[135]  Jeffrey S. Reid,et al.  A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products , 2010 .

[136]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[137]  Norman G. Loeb,et al.  Direct Aerosol Radiative Forcing Uncertainty Based on a Radiative Perturbation Analysis , 2010 .

[138]  M. V. Ramana,et al.  Warming influenced by the ratio of black carbon to sulphate and the black-carbon source , 2010 .

[139]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[140]  Proceedings of SPIE,et al.  Lidar Remote Sensing for Environmental Monitoring X , 2009 .

[141]  K. Prather,et al.  In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates , 2009, Proceedings of the National Academy of Sciences.

[142]  R. Dickinson,et al.  Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia , 2009 .

[143]  Yi Ming,et al.  Nonlinear Climate and Hydrological Responses to Aerosol Effects , 2009 .

[144]  Robert Wood,et al.  Satellite-derived direct radiative effect of aerosols dependent on cloud cover , 2009 .

[145]  K. Eleftheriadis,et al.  Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny‐Ålesund, Svalbard from 1998–2007 , 2009 .

[146]  U. Lohmann,et al.  In situ determination of atmospheric aerosol composition as a function of hygroscopic growth , 2008 .

[147]  V. Ramanathan,et al.  Global and regional climate changes due to black carbon , 2008 .

[148]  O. Boucher,et al.  Satellite-based estimate of the direct and indirect aerosol climate forcing , 2008 .

[149]  Gelsomina Pappalardo,et al.  EARLINET: the European aerosol research lidar network , 2008 .

[150]  P. Levelt,et al.  Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview , 2007 .

[151]  Tami C. Bond,et al.  Spectral absorption properties of atmospheric aerosols , 2007 .

[152]  O. Boucher,et al.  Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model , 2007 .

[153]  J. Hansen,et al.  Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory mission , 2007 .

[154]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[155]  Michael Schulz,et al.  Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations , 2006 .

[156]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[157]  T. Tuch,et al.  Intercomparisons and Aerosol Calibrations of 12 Commercial Integrating Nephelometers of Three Manufacturers , 2006 .

[158]  John H. Seinfeld,et al.  Role of Climate Change in Global Predictions of Future Tropospheric Ozone and Aerosols , 2006 .

[159]  V. Ramanathan,et al.  Weakening of North Indian SST Gradients and the Monsoon Rainfall in India and the Sahel , 2006 .

[160]  Jean-Francois Lamarque,et al.  Sea-salt aerosol response to climate change: Last Glacial Maximum, preindustrial, and doubled carbon dioxide climates , 2006 .

[161]  T. Bond,et al.  Light Absorption by Carbonaceous Particles: An Investigative Review , 2006 .

[162]  Stephen Hodge,et al.  A. Theoretical Basis , 2005 .

[163]  Otto P. Hasekamp,et al.  Retrieval of aerosol properties over the ocean from multispectral single‐viewing‐angle measurements of intensity and polarization: Retrieval approach, information content, and sensitivity study , 2005 .

[164]  M. Chin,et al.  A review of measurement-based assessments of the aerosol direct radiative effect and forcing , 2005 .

[165]  J. Kiehl,et al.  Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[166]  M. Kirkpatrick,et al.  The impact of humidity above stratiform clouds on indirect aerosol climate forcing , 2004, Nature.

[167]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[168]  Yoram J. Kaufman,et al.  Monitoring of aerosol forcing of climate from space: analysis of measurement requirements , 2004, Journal of Quantitative Spectroscopy and Radiative Transfer.

[169]  N. Mahowald,et al.  Sensitivity of TOMS aerosol index to boundary layer height: Implications for detection of mineral aerosol sources , 2004 .

[170]  J. Hansen,et al.  Soot climate forcing via snow and ice albedos. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[171]  R. Martin,et al.  Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols , 2003 .

[172]  J. Seinfeld,et al.  Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect effect 1. Extended Köhler theory , 2002 .

[173]  J. Hansen,et al.  Climate Effects of Black Carbon Aerosols in China and India , 2002, Science.

[174]  Leon D. Rotstayn,et al.  Tropical Rainfall Trends and the Indirect Aerosol Effect , 2002 .

[175]  J. Dufresne,et al.  Longwave Scattering Effects of Mineral Aerosols , 2002 .

[176]  B. Holben,et al.  Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species with a Global Three-Dimensional Model , 2002 .

[177]  Qingyuan Han,et al.  Three Different Behaviors of Liquid Water Path of Water Clouds in Aerosol-Cloud Interactions , 2002 .

[178]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[179]  V. Ramanathan,et al.  Aerosols, Climate, and the Hydrological Cycle , 2001, Science.

[180]  M. Jacobson,et al.  Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols , 2022 .

[181]  M. Jacobson Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols , 2001 .

[182]  Adolfo Comeron,et al.  A European aerosol research lidar network to establish an aerosol climatology (EARLINET) , 2000 .

[183]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[184]  S. K. Satheesh,et al.  Large differences in tropical aerosol forcing at the top of the atmosphere and Earth's surface , 2000, Nature.

[185]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[186]  G. Meehl,et al.  The Coupled Model Intercomparison Project (CMIP) , 2000 .

[187]  Tami C. Bond,et al.  Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols , 1999 .

[188]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[189]  P. Bhartia,et al.  Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation , 1998 .

[190]  V. Ramaswamy,et al.  Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols , 1998 .

[191]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1998 .

[192]  J. Seinfeld,et al.  Effect of clouds on direct aerosol radiative forcing of climate , 1997 .

[193]  M. Mishchenko,et al.  Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight , 1997 .

[194]  Y. Kaufman,et al.  Passive remote sensing of tropospheric aerosol and atmospheric , 1997 .

[195]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[196]  V. Ramaswamy,et al.  Linear additivity of climate response for combined albedo and greenhouse perturbations , 1997 .

[197]  J. Coakley,et al.  Climate Forcing by Anthropogenic Aerosols , 1992, Science.

[198]  Teruyuki Nakajima,et al.  Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation , 1988 .

[199]  J. Klett Lidar inversion with variable backscatter/extinction ratios. , 1985, Applied optics.

[200]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[201]  P. Chylek,et al.  Effect of Graphitic Carbon on the Albedo of Clouds , 1984 .

[202]  V. Ramaswamy,et al.  Albedo of soot‐contaminated snow , 1983 .

[203]  Robert J. Charlson,et al.  The atmospheric aerosol system: An overview , 1983 .

[204]  T. Ackerman,et al.  Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles. , 1981, Applied optics.

[205]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[206]  J. Coakley,et al.  Aerosols and Climate , 1974, Science.