Large-scale genome sequencing of fungi provides insights into the early evolution of symbiotic traits.

Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to ful fi ll new symbiotic functions, (3) diversi fi cation of novel, lineage-speci fi c symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.

[1]  L. Lanfranco,et al.  Unique and common traits in mycorrhizal symbioses , 2020, Nature Reviews Microbiology.

[2]  A. Kohler,et al.  Mycorrhizal effector PaMiSSP10b alters polyamine biosynthesis in Eucalyptus root cells and promotes root colonization. , 2020, The New phytologist.

[3]  A. Kohler,et al.  The small secreted effector protein MiSSP7.6 of Laccaria bicolor is required for the establishment of ectomycorrhizal symbiosis. , 2020, Environmental microbiology.

[4]  P. Kennedy,et al.  Functional convergence in the decomposition of fungal necromass in soil and wood. , 2019, FEMS microbiology ecology.

[5]  C. Mathé,et al.  In silico definition of new ligninolytic peroxidase sub-classes in fungi and putative relation to fungal life style , 2019, Scientific Reports.

[6]  S. Frey Mycorrhizal Fungi as Mediators of Soil Organic Matter Dynamics , 2019, Annual Review of Ecology, Evolution, and Systematics.

[7]  L. Tedersoo,et al.  Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes , 2019, Biological reviews of the Cambridge Philosophical Society.

[8]  B. Henrissat,et al.  Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae. , 2019, The New phytologist.

[9]  A. Classen,et al.  Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. , 2019, The New phytologist.

[10]  Juying Yan,et al.  Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi , 2019, Proceedings of the National Academy of Sciences.

[11]  B. Henrissat,et al.  Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. , 2019, The New phytologist.

[12]  Anna Lipzen,et al.  Megaphylogeny resolves global patterns of mushroom evolution , 2019, Nature Ecology & Evolution.

[13]  J. Stajich,et al.  Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota. , 2019, The New phytologist.

[14]  L. Saint-Andre,et al.  First evidences that the ectomycorrhizal fungus Paxillus involutus mobilizes nitrogen and carbon from saprotrophic fungus necromass , 2018, Environmental microbiology.

[15]  Emmanuel Paradis,et al.  ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R , 2018, Bioinform..

[16]  C. Troein,et al.  The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen , 2018, The ISME Journal.

[17]  D. Hibbett,et al.  Contemporaneous radiations of fungi and plants linked to symbiosis , 2018, Nature Communications.

[18]  George E Anasontzis,et al.  The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted β-1,4 endoglucanase that plays a key role in symbiosis development. , 2018, The New phytologist.

[19]  L. Tedersoo,et al.  Evolutionary history of mycorrhizal symbioses and global host plant diversity. , 2018, The New phytologist.

[20]  M. Selosse,et al.  The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. , 2018, The New phytologist.

[21]  J. Poulain,et al.  Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle , 2018, Nature Ecology & Evolution.

[22]  B. Henrissat,et al.  Rapid Divergence of Genome Architectures Following the Origin of an Ectomycorrhizal Symbiosis in the Genus Amanita , 2018, Molecular biology and evolution.

[23]  B. Henrissat,et al.  Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. , 2018, The New phytologist.

[24]  Takaki Maekawa,et al.  Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen , 2018, BMC Genomics.

[25]  C. Peterson,et al.  Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus , 2018, The New phytologist.

[26]  D. Zak,et al.  Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. , 2018, The New phytologist.

[27]  L. Nagy,et al.  Complex multicellularity in fungi: evolutionary convergence, single origin, or both? , 2018, Biological reviews of the Cambridge Philosophical Society.

[28]  Virginie Puech-Pagès,et al.  Laccaria bicolor MiSSP8 is a small-secreted protein decisive for the establishment of the ectomycorrhizal symbiosis , 2017, bioRxiv.

[29]  Sean Doyle,et al.  Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria , 2017, Nature Ecology & Evolution.

[30]  David K. Smith,et al.  ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data , 2017 .

[31]  L. Tedersoo,et al.  Evolution of ectomycorrhizal symbiosis in plants , 2017 .

[32]  L. Tedersoo,et al.  Ectomycorrhizal Fungal Lineages: Detection of Four New Groups and Notes on Consistent Recognition of Ectomycorrhizal Taxa in High-Throughput Sequencing Studies , 2017 .

[33]  Francis Martin,et al.  Unearthing the roots of ectomycorrhizal symbioses , 2016, Nature Reviews Microbiology.

[34]  R. Vilgalys,et al.  Metatranscriptomic Study of Common and Host-Specific Patterns of Gene Expression between Pines and Their Symbiotic Ectomycorrhizal Fungi in the Genus Suillus , 2016, PLoS genetics.

[35]  B. Henrissat,et al.  Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum , 2016, Nature Communications.

[36]  M. Schatz,et al.  Phased diploid genome assembly with single-molecule real-time sequencing , 2016, Nature Methods.

[37]  J. Grimwood,et al.  Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles , 2016, PLoS genetics.

[38]  D. Hibbett,et al.  Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities. , 2016, Molecular biology and evolution.

[39]  Scott T. Bates,et al.  FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild , 2016 .

[40]  D. Hibbett,et al.  Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors , 2015, The New phytologist.

[41]  F. Martin,et al.  Comparative Analysis of Secretomes from Ectomycorrhizal Fungi with an Emphasis on Small-Secreted Proteins , 2015, Front. Microbiol..

[42]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[43]  Bernard Henrissat,et al.  Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists , 2015, Nature Genetics.

[44]  M. V. D. van der Heijden,et al.  Mycorrhizal ecology and evolution : the past , the present , and the future , 2015 .

[45]  B. Lindahl,et al.  Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs. , 2015, The New phytologist.

[46]  R. Henrik Nilsson,et al.  Global diversity and geography of soil fungi , 2014, Science.

[47]  D. Hibbett,et al.  Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts , 2014, Nature Communications.

[48]  F. Martin,et al.  Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. , 2014, The New phytologist.

[49]  Jens Kattge,et al.  A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms , 2014, Nature Communications.

[50]  S. Grayston,et al.  Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling , 2014, Front. Microbiol..

[51]  J. Morrell-Falvey,et al.  Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes , 2014, Proceedings of the National Academy of Sciences.

[52]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[53]  Inna Dubchak,et al.  MycoCosm portal: gearing up for 1000 fungal genomes , 2013, Nucleic Acids Res..

[54]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[55]  Yan Zhang,et al.  PATRIC, the bacterial bioinformatics database and analysis resource , 2013, Nucleic Acids Res..

[56]  C. Troein,et al.  Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus , 2013, The ISME Journal.

[57]  O. Ovaskainen,et al.  Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest , 2013, Science.

[58]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[59]  Manolis Kellis,et al.  TreeFix: Statistically Informed Gene Tree Error Correction Using Species Trees , 2012, Systematic biology.

[60]  R. Gibbs,et al.  Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology , 2012, PloS one.

[61]  Albee Y. Ling,et al.  The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes , 2012, Science.

[62]  M. Schatz,et al.  Hybrid error correction and de novo assembly of single-molecule sequencing reads , 2012, Nature Biotechnology.

[63]  Franck Picard,et al.  High-quality sequence clustering guided by network topology and multiple alignment likelihood , 2012, Bioinform..

[64]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[65]  Cedric E. Ginestet ggplot2: Elegant Graphics for Data Analysis , 2011 .

[66]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[67]  Bernard Henrissat,et al.  Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis , 2010, Nature.

[68]  T. May,et al.  Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages , 2010, Mycorrhiza.

[69]  F. Konietschke,et al.  Simultane Konfidenzintervalle für nichtparametrische relative Kontrasteffekte , 2009 .

[70]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[71]  Adam P. Arkin,et al.  FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix , 2009, Molecular biology and evolution.

[72]  D. J. Lodge,et al.  Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae , 2009 .

[73]  J. Logsdon,et al.  Signs of Sex: What We Know and How We Know It , 2022 .

[74]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[75]  M. Ueda,et al.  Characterization of the carbohydrase productions of an ectomycorrhizal fungus, Tricholoma matsutake , 2008, Mycoscience.

[76]  A. Löytynoja,et al.  Phylogeny-Aware Gap Placement Prevents Errors in Sequence Alignment and Evolutionary Analysis , 2008, Science.

[77]  J. Herr,et al.  Ectomycorrhizal fungi and the biotrophy-saprotrophy continuum. , 2008, The New phytologist.

[78]  Y. Van de Peer,et al.  The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis , 2008, Nature.

[79]  Tomislav Domazet-Loso,et al.  A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. , 2007, Trends in genetics : TIG.

[80]  S. Trumbore,et al.  Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. , 2007, The New phytologist.

[81]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[82]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[83]  R. Hanlin,et al.  Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism. , 2005, Mycologia.

[84]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[85]  Wu-chun Feng,et al.  The design, implementation, and evaluation of mpiBLAST , 2003 .

[86]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[87]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[88]  M. Donoghue,et al.  Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of Homobasidiomycetes. , 1997, American journal of botany.

[89]  B. LePage,et al.  Fossil ectomycorrhizae from the Middle Eocene. , 1997, American journal of botany.

[90]  D. Soltis,et al.  Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.