A Circuit Complexity Approach to Transductions

Low circuit complexity classes and regular languages exhibit very tight interactions that shade light on their respective expressiveness. We propose to study these interactions at a functional level, by investigating the deterministic rational transductions computable by constant-depth, polysize circuits. To this end, a circuit framework of independent interest that allows variable output length is introduced. Relying on it, there is a general characterization of the set of transductions realizable by circuits. It is then decidable whether a transduction is definable in \(\mathrm{AC}^0\) and, assuming a well-established conjecture, the same for \(\mathrm{ACC}^0\).

[1]  Howard Straubing,et al.  Some results on C-varieties , 2005, RAIRO Theor. Informatics Appl..

[2]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[3]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[4]  C. Reutenauer,et al.  Varieties and rational functions , 1995 .

[5]  Howard Straubing,et al.  Regular Languages in NC¹ , 1992, J. Comput. Syst. Sci..

[6]  Eric Allender,et al.  On TC0, AC0, and Arithmetic Circuits , 2000, J. Comput. Syst. Sci..

[7]  Christophe Reutenauer,et al.  Variétés et fonctions rationnelles , 1995, Theor. Comput. Sci..

[8]  Thomas Schwentick,et al.  The Descriptive Complexity Approach to LOGCFL , 1998, J. Comput. Syst. Sci..

[9]  Christian Choffrut,et al.  Counting with Rational Functions , 1986, ICALP.

[10]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[11]  Eric Allender,et al.  Complexity of Regular Functions , 2015, LATA.

[12]  Heribert Vollmer,et al.  Introduction to Circuit Complexity , 1999, Texts in Theoretical Computer Science An EATCS Series.

[13]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[14]  Howard Straubing,et al.  First Order Formulas with Modular Ppredicates , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[15]  Mikolaj Bojanczyk,et al.  Transducers with Origin Information , 2013, ICALP.

[16]  Ashutosh Trivedi,et al.  First-order Definable String Transformations , 2014, FSTTCS.

[17]  Howard Straubing,et al.  On Logical Descriptions of Regular Languages , 2002, LATIN.

[18]  Pierre McKenzie,et al.  On the Complexity of Free Monoid Morphisms , 1998, ISAAC.

[19]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[20]  Pavel Pudlák,et al.  Bounded-depth circuits: separating wires from gates , 2005, STOC '05.

[21]  A BarringtonDavid Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1989 .

[22]  Christian Choffrut,et al.  A Generalization of Ginsburg and Rose's Characterization of G-S-M Mappings , 1979, ICALP.

[23]  Zoltán Ésik,et al.  Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Automata , 2001, Acta Cybern..

[24]  Heribert Vollmer,et al.  Verifying Proofs in Constant Depth , 2011, MFCS.