Accelerating Scientific Computing in the Post-Moore’s Era

Novel uses of graphical processing units for accelerated computation revolutionized the field of high-performance scientific computing by providing specialized workflows tailored to algorithmic requirements. As the era of Moore’s law draws to a close, many new non–von Neumann processors are emerging as potential computational accelerators, including those based on the principles of neuromorphic computing, tensor algebra, and quantum information. While development of these new processors is continuing to mature, the potential impact on accelerated computing is anticipated to be profound. We discuss how different processing models can advance computing in key scientific paradigms: machine learning and constraint satisfaction. Significantly, each of these new processor types utilizes a fundamentally different model of computation, and this raises questions about how to best use such processors in the design and implementation of applications. While many processors are being developed with a specific domain target, the ubiquity of spin-glass models and neural networks provides an avenue for multi-functional applications. This also hints at the infrastructure needed to integrate next-generation processing units into future high-performance computing systems.

[1]  Eugene C. Freuder,et al.  The Complexity of Some Polynomial Network Consistency Algorithms for Constraint Satisfaction Problems , 1985, Artif. Intell..

[2]  Pentti Kanerva,et al.  Sparse Distributed Memory , 1988 .

[3]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[4]  Steve B. Furber,et al.  The SpiNNaker Project , 2014, Proceedings of the IEEE.

[5]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[6]  Keith A. Britt,et al.  Quantum Annealing for Prime Factorization , 2018, Scientific Reports.

[7]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[8]  Yong Liu,et al.  A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[9]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[10]  Hava T. Siegelmann,et al.  The Super-Turing Computational Power of plastic Recurrent Neural Networks , 2014, Int. J. Neural Syst..

[11]  Sae Woo Nam,et al.  Superconducting optoelectronic circuits for neuromorphic computing , 2016, ArXiv.

[12]  Neena Imam,et al.  Performance Models for Split-Execution Computing Systems , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[13]  Steve B. Furber,et al.  Using Stochastic Spiking Neural Networks on SpiNNaker to Solve Constraint Satisfaction Problems , 2017, Front. Neurosci..

[14]  Catherine D. Schuman,et al.  A Unified Hardware/Software Co-Design Framework for Neuromorphic Computing Devices and Applications , 2017, 2017 IEEE International Conference on Rebooting Computing (ICRC).

[15]  Nigel Crook,et al.  Pattern recall in networks of chaotic neurons , 2007, Biosyst..

[16]  David Von Dollen,et al.  Optimizing traffic flow using quantum annealing and classical machine learning , 2017 .

[17]  Hava T. Siegelmann,et al.  Neural and Super-Turing Computing , 2003, Minds and Machines.

[18]  John E. Stone,et al.  GPU clusters for high-performance computing , 2009, 2009 IEEE International Conference on Cluster Computing and Workshops.

[19]  Ali A. Minai,et al.  Efficient associative memory using small-world architecture , 2001, Neurocomputing.

[20]  Thomas Schiex,et al.  Valued Constraint Satisfaction Problems: Hard and Easy Problems , 1995, IJCAI.

[21]  Srinivasan Arunachalam,et al.  Optimizing quantum optimization algorithms via faster quantum gradient computation , 2017, SODA.

[22]  Arie E. Kaufman,et al.  GPU Cluster for High Performance Computing , 2004, Proceedings of the ACM/IEEE SC2004 Conference.

[23]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[24]  John J. Hopfield,et al.  Rapid, parallel path planning by propagating wavefronts of spiking neural activity , 2012, Front. Comput. Neurosci..

[25]  Juan Miguel Arrazola,et al.  A Quantum Approximate Optimization Algorithm for continuous problems , 2019, 1902.00409.

[26]  Matthew French,et al.  Experimental quantum annealing: case study involving the graph isomorphism problem , 2015, Scientific Reports.

[27]  Travis S. Humble,et al.  Simulated execution of hybrid quantum computing systems , 2018, Commercial + Scientific Sensing and Imaging.

[28]  Kazuyuki Aihara,et al.  A fully programmable 100-spin coherent Ising machine with all-to-all connections , 2016, Science.

[29]  Christian F. A. Negre,et al.  Graph Partitioning using Quantum Annealing on the D-Wave System , 2017, ArXiv.

[30]  Lei Wang,et al.  Differentiable Learning of Quantum Circuit Born Machine , 2018, Physical Review A.

[31]  Andrew S. Cassidy,et al.  Conversion of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware , 2016, 2016 IEEE International Conference on Rebooting Computing (ICRC).

[32]  Travis S. Humble,et al.  Quantum annealing for systems of polynomial equations , 2018, Scientific Reports.

[33]  Peter Rossmanith,et al.  Simulated Annealing , 2008, Taschenbuch der Algorithmen.

[34]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[35]  Catherine D. Schuman,et al.  A Study of Complex Deep Learning Networks on High Performance, Neuromorphic, and Quantum Computers , 2016, 2016 2nd Workshop on Machine Learning in HPC Environments (MLHPC).

[36]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[37]  Nathan Killoran,et al.  PennyLane: Automatic differentiation of hybrid quantum-classical computations , 2018, ArXiv.

[38]  Shenggen Zheng,et al.  Quantum generative adversarial network for generating discrete data , 2018 .

[39]  Daniel A. Lidar,et al.  Max 2-SAT with up to 108 qubits , 2013, 1307.3931.

[40]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[41]  Santosh S. Venkatesh,et al.  The capacity of the Hopfield associative memory , 1987, IEEE Trans. Inf. Theory.

[42]  Catherine D. Schuman,et al.  Memristive Mixed-Signal Neuromorphic Systems: Energy-Efficient Learning at the Circuit-Level , 2018, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[43]  Alexander Heinecke,et al.  Leveraging the bfloat16 Artificial Intelligence Datatype For Higher-Precision Computations , 2019, 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH).

[44]  Craig M. Vineyard,et al.  Composing neural algorithms with Fugu , 2019, ICONS.

[45]  Travis S. Humble,et al.  An integrated programming and development environment for adiabatic quantum optimization , 2013, 1309.3575.

[46]  Andrew D. King,et al.  Emulating the coherent Ising machine with a mean-field algorithm , 2018, ArXiv.

[47]  Rupak Biswas,et al.  Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers , 2017, Quantum Science and Technology.

[48]  Michael Broughton,et al.  A Universal Training Algorithm for Quantum Deep Learning , 2018, 1806.09729.

[49]  Catherine D. Schuman,et al.  An evolutionary optimization framework for neural networks and neuromorphic architectures , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[50]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[51]  Rajat Raina,et al.  Large-scale deep unsupervised learning using graphics processors , 2009, ICML '09.

[52]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[53]  Hong Wang,et al.  Loihi: A Neuromorphic Manycore Processor with On-Chip Learning , 2018, IEEE Micro.

[54]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[55]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[56]  Michael Broughton,et al.  A quantum algorithm to train neural networks using low-depth circuits , 2017, 1712.05304.

[57]  Catherine D. Schuman,et al.  A Survey of Neuromorphic Computing and Neural Networks in Hardware , 2017, ArXiv.

[58]  Seth Lloyd,et al.  Quantum Generative Adversarial Learning. , 2018, Physical review letters.

[59]  Travis S. Humble,et al.  High-Performance Computing with Quantum Processing Units , 2015, ACM J. Emerg. Technol. Comput. Syst..

[60]  Nathan Killoran,et al.  Quantum generative adversarial networks , 2018, Physical Review A.

[61]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2018, Nature.

[62]  Kathleen E. Hamilton,et al.  Neural Networks and Graph Algorithms with Next-Generation Processors , 2018, 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[63]  Elbert E. N. Macau,et al.  A dynamical model for community detection in complex networks , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[64]  V.P. Plagianakos,et al.  Spiking neural network training using evolutionary algorithms , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[65]  Wolfgang Maass,et al.  Networks of Spiking Neurons: The Third Generation of Neural Network Models , 1996, Electron. Colloquium Comput. Complex..

[66]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[67]  Mark Kröll,et al.  Movement Prediction from Real-World Images Using a Liquid State Machine , 2005, IEA/AIE.

[68]  Andrew S. Cassidy,et al.  Cognitive computing systems: Algorithms and applications for networks of neurosynaptic cores , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[69]  Kathleen E. Hamilton,et al.  Spiking spin-glass models for label propagation and community detection , 2018 .

[70]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[71]  Keisuke Fujii,et al.  Harnessing disordered quantum dynamics for machine learning , 2016, 1602.08159.

[72]  Somnath Paul,et al.  Event-driven random backpropagation: Enabling neuromorphic deep learning machines , 2017, 2017 IEEE International Symposium on Circuits and Systems (ISCAS).

[73]  Fang Zhang,et al.  Alibaba Cloud Quantum Development Kit: Large-Scale Classical Simulation of Quantum Circuits , 2019 .

[74]  M. W. Johnson,et al.  Phase transitions in a programmable quantum spin glass simulator , 2018, Science.

[75]  Craig M. Vineyard,et al.  Training deep neural networks for binary communication with the Whetstone method , 2019 .

[76]  Cory Merkel,et al.  Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing , 2016, Front. Neurosci..

[77]  Andrea Morello,et al.  What would you do with 1000 qubits? , 2018, Quantum Science and Technology.

[78]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[79]  Christof Teuscher,et al.  Memristor-based reservoir computing , 2012, 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[80]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[81]  Kathleen E. Hamilton,et al.  Recall Performance for Content-Addressable Memory Using Adiabatic Quantum Optimization , 2017, Entropy.

[82]  Jim D. Garside,et al.  SpiNNaker: A 1-W 18-Core System-on-Chip for Massively-Parallel Neural Network Simulation , 2013, IEEE Journal of Solid-State Circuits.

[83]  Gert Cauwenberghs,et al.  Gibbs sampling with low-power spiking digital neurons , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[84]  R. Moessner,et al.  Quantum annealing: The fastest route to quantum computation? , 2014, The European Physical Journal Special Topics.

[85]  R. Byer,et al.  Network of time-multiplexed optical parametric oscillators as a coherent Ising machine , 2014, Nature Photonics.

[86]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[87]  John D. Leidel,et al.  Extreme Heterogeneity 2018 - Productive Computational Science in the Era of Extreme Heterogeneity: Report for DOE ASCR Workshop on Extreme Heterogeneity , 2018 .

[88]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[89]  Craig M. Vineyard,et al.  Whetstone: An accessible, platform-independent method for training spiking deep neural networks for neuromorphic processors , 2018 .

[90]  Edward Grant,et al.  An initialization strategy for addressing barren plateaus in parametrized quantum circuits , 2019, Quantum.

[91]  Yoshihisa Yamamoto,et al.  Boltzmann sampling for an XY model using a non-degenerate optical parametric oscillator network , 2017, 1705.03611.

[92]  W. Macready,et al.  Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization , 2008, 0804.4457.

[93]  Marcos G. Quiles,et al.  Community Detection in Complex Networks Using Coupled Kuramoto Oscillators , 2014, 2014 14th International Conference on Computational Science and Its Applications.

[94]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[95]  Toshiyuki Miyazawa,et al.  Physics-Inspired Optimization for Quadratic Unconstrained Problems Using a Digital Annealer , 2018, Front. Phys..

[96]  Chiara Macchiavello,et al.  An artificial neuron implemented on an actual quantum processor , 2018, npj Quantum Information.

[97]  D.-L. Lee,et al.  Improvements of Complex-Valued Hopfield Associative Memory by Using Generalized Projection Rules , 2006, IEEE Transactions on Neural Networks.

[98]  Karsten Schwan,et al.  Keeneland: Bringing Heterogeneous GPU Computing to the Computational Science Community , 2011, Computing in Science & Engineering.

[99]  D. McMahon Adiabatic Quantum Computation , 2008 .

[100]  Andrew W. Cross,et al.  Demonstration of quantum advantage in machine learning , 2015, npj Quantum Information.

[101]  Scott Pakin,et al.  A Survey of Programming Tools for D-Wave Quantum-Annealing Processors , 2018, ISC.

[102]  Hartmut Neven,et al.  Classification with Quantum Neural Networks on Near Term Processors , 2018, 1802.06002.

[103]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[104]  Sompolinsky,et al.  Storing infinite numbers of patterns in a spin-glass model of neural networks. , 1985, Physical review letters.

[105]  Cristopher Moore,et al.  The Nature of Computation , 2011 .

[106]  John D. Owens,et al.  A Comparative Study on Exact Triangle Counting Algorithms on the GPU , 2016, HPGP@HPDC.

[107]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[108]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[109]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[110]  François Le Gall,et al.  Quantum Advantage for the LOCAL Model in Distributed Computing , 2018, STACS.

[111]  Richard G. Baraniuk,et al.  Sparse Coding via Thresholding and Local Competition in Neural Circuits , 2008, Neural Computation.

[112]  Sompolinsky,et al.  Willshaw model: Associative memory with sparse coding and low firing rates. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[113]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[114]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[115]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[116]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[117]  Jiangping Hu,et al.  Learning and Inference on Generative Adversarial Quantum Circuits , 2018, Physical Review A.

[118]  KumarVipin Algorithms for constraint-satisfaction problems , 1992 .

[119]  Simone Severini,et al.  Adversarial quantum circuit learning for pure state approximation , 2018, New Journal of Physics.

[120]  Aidan Roy,et al.  Fast clique minor generation in Chimera qubit connectivity graphs , 2015, Quantum Inf. Process..

[121]  Erio Tosatti,et al.  Optimization by quantum annealing: lessons from hard satisfiability problems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[122]  Travis S. Humble,et al.  Quantum Accelerators for High-Performance Computing Systems , 2017, 2017 IEEE International Conference on Rebooting Computing (ICRC).

[123]  Steve B. Furber,et al.  Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model , 2018, Front. Neurosci..

[124]  Maria Schuld,et al.  The quest for a Quantum Neural Network , 2014, Quantum Information Processing.

[125]  Itay Hen,et al.  Quantum Annealing for Constrained Optimization , 2015, 1508.04212.

[126]  Yoshihisa Yamamoto,et al.  Quantum correlation in degenerate optical parametric oscillators with mutual injections , 2015, 1506.00135.

[127]  Josh Izaac,et al.  Production of photonic universal quantum gates enhanced by machine learning , 2019, Physical Review A.

[128]  Ryan S. Bennink,et al.  Quantum Computing Circuits and Devices , 2018, IEEE Design & Test.

[129]  SchmidhuberJürgen Deep learning in neural networks , 2015 .

[130]  Samy Bengio,et al.  Neural Combinatorial Optimization with Reinforcement Learning , 2016, ICLR.

[131]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.

[132]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[133]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[134]  J. Reichardt,et al.  Statistical mechanics of community detection. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[135]  Gert Cauwenberghs,et al.  Mapping Generative Models onto a Network of Digital Spiking Neurons , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[136]  BART KOSKO,et al.  Bidirectional associative memories , 1988, IEEE Trans. Syst. Man Cybern..

[137]  Jean-Charles Delvenne,et al.  The many facets of community detection in complex networks , 2016, Applied Network Science.

[138]  Enrico Macii,et al.  The Human Brain Project and neuromorphic computing. , 2013, Functional neurology.

[139]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[140]  M. Hastings,et al.  Training A Quantum Optimizer , 2016, 1605.05370.

[141]  Jack J. Dongarra,et al.  Enabling and scaling matrix computations on heterogeneous multi-core and multi-GPU systems , 2012, ICS '12.

[142]  Maria Schuld,et al.  Simulating a perceptron on a quantum computer , 2014, ArXiv.

[143]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[144]  Andrew D. King,et al.  Performance of a quantum annealer on range-limited constraint satisfaction problems , 2015, ArXiv.

[145]  Blatt,et al.  Superparamagnetic clustering of data. , 1998, Physical review letters.

[146]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[147]  Nikola Kasabov,et al.  Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. , 2013, Neural networks : the official journal of the International Neural Network Society.

[148]  Tara N. Sainath,et al.  Deep Belief Networks using discriminative features for phone recognition , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[149]  Andrzej Opala,et al.  Quantum reservoir processing , 2018, npj Quantum Information.

[150]  Seyed Saeed Changiz Rezaei,et al.  Systematic and deterministic graph minor embedding for Cartesian products of graphs , 2016, Quantum Information Processing.

[151]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[152]  Kristel Michielsen,et al.  Spanning Tree Calculations on D-Wave 2 Machines , 2016 .

[153]  Benjamin Schrauwen,et al.  Compact hardware liquid state machines on FPGA for real-time speech recognition , 2008, Neural Networks.

[154]  A. Zeilinger,et al.  Quantum Communication with Photons , 2017, 1701.00989.

[155]  Kathleen E. Hamilton,et al.  Sparse Hardware Embedding of Spiking Neuron Systems for Community Detection , 2018, ACM J. Emerg. Technol. Comput. Syst..

[156]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[157]  Garrett T. Kenyon,et al.  Generating Sparse Representations Using Quantum Annealing: Comparison to Classical Algorithms , 2017, 2017 IEEE International Conference on Rebooting Computing (ICRC).

[158]  Frédéric Magniez,et al.  Quantum Algorithms for Element Distinctness , 2005, SIAM J. Comput..

[159]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[160]  Hong Wang,et al.  Programming Spiking Neural Networks on Intel’s Loihi , 2018, Computer.

[161]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[162]  P. Ronhovde,et al.  Phase transitions in random Potts systems and the community detection problem: spin-glass type and dynamic perspectives , 2010, 1008.2699.

[163]  Andrew S. Cassidy,et al.  Building block of a programmable neuromorphic substrate: A digital neurosynaptic core , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).

[164]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[165]  David A. Patterson,et al.  Motivation for and Evaluation of the First Tensor Processing Unit , 2018, IEEE Micro.

[166]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[167]  Angelo Cangelosi,et al.  Graceful Degradation Under Noise on Brain Inspired Robot Controllers , 2016, ICONIP.

[168]  Vipin Kumar,et al.  Algorithms for Constraint-Satisfaction Problems: A Survey , 1992, AI Mag..

[169]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[170]  Shun-ichi Amari,et al.  Characteristics of sparsely encoded associative memory , 1989, Neural Networks.

[171]  Alejandro Perdomo-Ortiz,et al.  A generative modeling approach for benchmarking and training shallow quantum circuits , 2018, npj Quantum Information.

[172]  Chong Wang,et al.  Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin , 2015, ICML.

[173]  Catherine C. McGeoch,et al.  Quantum Annealing amid Local Ruggedness and Global Frustration , 2017, Journal of the Physical Society of Japan.

[174]  Firas Hamze,et al.  Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines , 2014, 1401.1546.

[175]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[176]  Robert König,et al.  Quantum advantage with shallow circuits , 2017, Science.

[177]  M. W. Johnson,et al.  Thermally assisted quantum annealing of a 16-qubit problem , 2013, Nature Communications.

[178]  Claude Berrou,et al.  Storing Sparse Messages in Networks of Neural Cliques , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[179]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[180]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[181]  Zijun Chen,et al.  Operating and Characterizing of a 72 Superconducting Qubit Processor ``Bristlecone'': Part 1 , 2019 .

[182]  Sander M. Bohte,et al.  Error-backpropagation in temporally encoded networks of spiking neurons , 2000, Neurocomputing.

[183]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[184]  Mark Kröll,et al.  Movement prediction from real-world images using a liquid state machine , 2006, Applied Intelligence.

[185]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[186]  Anderson Rocha,et al.  Label propagation through neuronal synchrony , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[187]  Simone Severini,et al.  Hierarchical quantum classifiers , 2018, npj Quantum Information.

[188]  Catherine D. Schuman,et al.  Memristive Ion Channel-Doped Biomembranes as Synaptic Mimics. , 2018, ACS nano.

[189]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[190]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[191]  Stefan Bornholdt,et al.  Detecting fuzzy community structures in complex networks with a Potts model. , 2004, Physical review letters.

[192]  A. Azzouz 2011 , 2020, City.

[193]  I. Hen,et al.  Temperature Scaling Law for Quantum Annealing Optimizers. , 2017, Physical review letters.

[194]  Kathleen E. Hamilton,et al.  Community detection with spiking neural networks for neuromorphic hardware , 2017, NCS.

[195]  Travis S. Humble,et al.  A language and hardware independent approach to quantum-classical computing , 2017, SoftwareX.

[196]  E HamiltonKathleen,et al.  Accelerating Scientific Computing in the Post-Moore’s Era , 2020 .

[197]  Kathleen E. Hamilton,et al.  Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets , 2016, Quantum Information Processing.

[198]  Bryan O'Gorman,et al.  A case study in programming a quantum annealer for hard operational planning problems , 2014, Quantum Information Processing.

[199]  Siddhartha Santra,et al.  Exponential capacity of associative memories under quantum annealing recall , 2016, ArXiv.

[200]  Garrick Orchard,et al.  SLAYER: Spike Layer Error Reassignment in Time , 2018, NeurIPS.

[201]  Ken-ichi Kawarabayashi,et al.  Experimental investigation of performance differences between coherent Ising machines and a quantum annealer , 2018, Science Advances.

[202]  Rupak Biswas,et al.  Readiness of Quantum Optimization Machines for Industrial Applications , 2017, Physical Review Applied.

[203]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[204]  Margaret Martonosi,et al.  Next Steps in Quantum Computing: Computer Science's Role , 2019, ArXiv.

[205]  Kathleen E. Hamilton,et al.  Shortest Path and Neighborhood Subgraph Extraction on a Spiking Memristive Neuromorphic Implementation , 2019, NICE '19.

[206]  Pierre Yger,et al.  PyNN: A Common Interface for Neuronal Network Simulators , 2008, Front. Neuroinform..

[207]  Kazuyuki Aihara,et al.  Associative Dynamics in a Chaotic Neural Network , 1997, Neural Networks.

[208]  Richard G. Baraniuk,et al.  Locally Competitive Algorithms for Sparse Approximation , 2007, 2007 IEEE International Conference on Image Processing.

[209]  Vincent Gripon,et al.  Sparse Neural Networks With Large Learning Diversity , 2011, IEEE Transactions on Neural Networks.

[210]  Stefan Habenschuss,et al.  Solving Constraint Satisfaction Problems with Networks of Spiking Neurons , 2016, Front. Neurosci..

[211]  SchuldMaria,et al.  The quest for a Quantum Neural Network , 2014 .

[212]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[213]  Emile H. L. Aarts,et al.  Simulated annealing: A pedestrian review of the theory and some applications , 1987 .

[214]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[215]  R. Byer,et al.  Coherent Ising machine based on degenerate optical parametric oscillators , 2013, 1311.2696.

[216]  P. Ronhovde,et al.  Local resolution-limit-free Potts model for community detection. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[217]  Jeremy D. Wendt,et al.  Benchmarking Adiabatic Quantum Optimization for Complex Network Analysis , 2015, 1604.00319.

[218]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[219]  Ken-ichi Kawarabayashi,et al.  A coherent Ising machine for 2000-node optimization problems , 2016, Science.

[220]  Thomas Wennekers,et al.  Associative memory in networks of spiking neurons , 2001, Neural Networks.

[221]  Florence March,et al.  2016 , 2016, Affair of the Heart.

[222]  Travis S. Humble,et al.  Adiabatic quantum optimization for associative memory recall , 2014, Front. Phys..

[223]  Steve B. Furber,et al.  Scalable energy-efficient, low-latency implementations of trained spiking Deep Belief Networks on SpiNNaker , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[224]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[225]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[226]  S. Jordan Fast quantum algorithm for numerical gradient estimation. , 2004, Physical review letters.

[227]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[228]  Dharmendra S. Modha,et al.  Backpropagation for Energy-Efficient Neuromorphic Computing , 2015, NIPS.

[229]  Thomas R. Osborn Fast Teaching of Boltzmann Machines with Local Inhibition , 1990 .

[230]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[231]  Andrew B. Kahng,et al.  ITRS 2.0: Toward a re-framing of the Semiconductor Technology Roadmap , 2014, 2014 IEEE 32nd International Conference on Computer Design (ICCD).

[232]  Alejandro Perdomo-Ortiz,et al.  Quantum-assisted Helmholtz machines: A quantum–classical deep learning framework for industrial datasets in near-term devices , 2017, ArXiv.

[233]  H. Neven,et al.  Quantum Algorithms for Fixed Qubit Architectures , 2017, 1703.06199.

[234]  Jure Leskovec,et al.  Empirical comparison of algorithms for network community detection , 2010, WWW '10.

[235]  Kazuyuki Aihara,et al.  Quantum model for coherent Ising machines: Stochastic differential equations with replicator dynamics , 2017, 1706.02034.

[236]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[237]  William R. Clements,et al.  Gaussian optical Ising machines , 2017, 1706.06488.

[238]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[239]  Henry Markram,et al.  The "Liquid Computer": A Novel Strategy for Real-Time Computing on Time Series , 2002 .

[240]  Aidan Roy,et al.  A practical heuristic for finding graph minors , 2014, ArXiv.

[241]  Travis S. Humble,et al.  Optimizing adiabatic quantum program compilation using a graph-theoretic framework , 2017, Quantum Information Processing.

[242]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[243]  Yoshihisa Yamamoto,et al.  Computational Principle and Performance Evaluation of Coherent Ising Machine Based on Degenerate Optical Parametric Oscillator Network , 2016, Entropy.

[244]  David A. Patterson,et al.  In-datacenter performance analysis of a tensor processing unit , 2017, 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).

[245]  Andrew S. Cassidy,et al.  Cognitive computing building block: A versatile and efficient digital neuron model for neurosynaptic cores , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[246]  Kristan Temme,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[247]  Travis S. Humble,et al.  Adiabatic quantum programming: minor embedding with hard faults , 2012, Quantum Information Processing.

[248]  M. Schuld,et al.  Circuit-centric quantum classifiers , 2018, Physical Review A.

[249]  Thomas M. Conte,et al.  Rebooting Computing: The Road Ahead , 2017, Computer.

[250]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..

[251]  Frédéric Magniez,et al.  Sublinear-Time Quantum Computation of the Diameter in CONGEST Networks , 2018, PODC.

[252]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[253]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[254]  Andrew S. Cassidy,et al.  Convolutional networks for fast, energy-efficient neuromorphic computing , 2016, Proceedings of the National Academy of Sciences.

[255]  William J. Zeng,et al.  A Practical Quantum Instruction Set Architecture , 2016, ArXiv.

[256]  Amos J. Storkey,et al.  The basins of attraction of a new Hopfield learning rule , 1999, Neural Networks.

[257]  François Le Gall,et al.  Triangle Finding and Listing in CONGEST Networks , 2017, PODC.

[258]  Ilya Safro,et al.  Community Detection Across Emerging Quantum Architectures , 2018, ArXiv.

[259]  Honglak Lee,et al.  Learning hierarchical representations for face verification with convolutional deep belief networks , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[260]  John Boyd Silicon chip delivers quantum speeds [News] , 2018 .

[261]  Kathleen E. Hamilton,et al.  Generative model benchmarks for superconducting qubits , 2018, Physical Review A.

[262]  Andrew D. King,et al.  Constructing SAT Filters with a Quantum Annealer , 2015, SAT.

[263]  S. Knysh,et al.  Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.

[264]  MaasWofgang Networks of spiking neurons: the third generation of neural network models , 1997 .

[265]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[266]  Mark W. Johnson,et al.  Observation of topological phenomena in a programmable lattice of 1,800 qubits , 2018, Nature.