Fundamental notions of analysis in subsystems of second-order arithmetic

We develop fundamental aspects of the theory of metric, Hilbert, and Banach spaces in the context of subsystems of second-order arithmetic. In particular, we explore issues having to do with distances, closed subsets and subspaces, closures, bases, norms, and projections. We pay close attention to variations that arise when formalizing deflnitions and theorems, and study the relationships between them. For example, we show that a natural formalization of the mean ergodic theorem can be proved in ACA0; but even recognizing the theorem’s \equivalent" existence assertions as such can also require the full strength of ACA0.

[1]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[2]  G. Takeuti Two Applications of Logic to Mathematics , 1978 .

[3]  H. Weyl,et al.  Das Kontinuum : kritische Untersuchungen über die Grundlagen der Analysis , 1932 .

[4]  Stephen G. Simpson,et al.  Separation and Weak König's Lemma , 1999, J. Symb. Log..

[5]  Stephen G. Simpson,et al.  Located sets and reverse mathematics , 2000, Journal of Symbolic Logic.

[6]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[7]  P. Walters Introduction to Ergodic Theory , 1977 .

[8]  C. Caramanis What is ergodic theory , 1963 .

[9]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[10]  Ulrich Kohlenbach,et al.  Some logical metatheorems with applications in functional analysis , 2003 .

[11]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[12]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[13]  Lawrence C. Paulson,et al.  Logic And Computation , 1987 .

[14]  Bas Spitters Constructive and intuitionistic integration theory and functional analysis , 2003 .

[15]  Jeffry L. Hirst Reverse mathematics of separably closed sets , 2006, Arch. Math. Log..

[16]  Paulo Oliva,et al.  Proof mining in L1-approximation , 2003, Ann. Pure Appl. Log..

[17]  Alberto Marcone,et al.  Lebesgue numbers and Atsuji spaces in subsystems of second-order arithmetic , 1998, Arch. Math. Log..

[18]  Ludomir Newelski,et al.  Logic Colloquium 2005 (Lecture Notes in Logic) , 2007 .

[19]  A. Kechris Classical descriptive set theory , 1987 .

[20]  Stephen G. Simpson,et al.  Vitali's Theorem and WWKL , 2002, Arch. Math. Log..

[21]  Xiaokang Yu,et al.  Periodic Points and Subsystems of Second-Order Arithmetic , 1993, Ann. Pure Appl. Log..

[22]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[23]  Alberto Marcone On the logical strength of Nash-Williams' theorem on transfinite sequences , 1994, math/9408204.

[24]  U. Kohlenbach Higher Order Reverse Mathematics , 2000 .

[25]  L. M. Milne-Thomson,et al.  Grundlagen der Mathematik , 1935, Nature.

[26]  H. Weyl,et al.  The Continuum: A Critical Examination of the Foundation of Analysis , 1987 .