Multi-fidelity electrochemical modeling of thermally activated battery cells
暂无分享,去创建一个
Benjamin B. Schroeder | Scott A. Roberts | Harry K. Moffat | Tyler G. Voskuilen | Benjamin Schroeder | S. Roberts | H. Moffat | T. Voskuilen
[1] W. Bessler,et al. The influence of equilibrium potential on the hydrogen oxidation kinetics of SOFC anodes , 2007 .
[2] R. Carsel,et al. Developing joint probability distributions of soil water retention characteristics , 1988 .
[3] Ronald A. Guidotti,et al. Thermal activated (thermal) battery technology: Part II. Molten salt electrolytes , 2008 .
[4] R. Nesper,et al. Li12Si7, eine Verbindung mit trigonal‐planaren Si4‐Clustern und isometrischen Si5‐Ringen , 1986 .
[5] Van Genuchten,et al. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .
[6] Michael Zeilinger,et al. Revision of the Li13Si4 structure , 2013, Acta crystallographica. Section E, Structure reports online.
[8] John Newman,et al. Mathematical Modeling of Lithium(alloy), Iron Disulfide Cells , 1987 .
[9] D. Vissers,et al. Phase Relationships in Positive Electrodes of High Temperature Li ‐ Al / LiCl ‐ KCl / FeS2 Cells , 1982 .
[10] R. A. Robie,et al. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10[5] pascals) pressure and at higher temperatures , 1995 .
[11] D. Goodwin,et al. Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.2.0 , 2015 .
[12] R. Krishna,et al. The Maxwell-Stefan approach to mass transfer , 1997 .
[13] A. Pelton,et al. Thermodynamic modeling of the Fe-S system , 2005 .
[14] Ram A. Sharma,et al. Thermodynamic Properties of the Lithium‐Silicon System , 1976 .
[15] Paul R. Shearing,et al. On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems , 2016 .
[16] R. Guidotti,et al. Thermal activated (“thermal”) battery technology: Part IIIa: FeS2 cathode material , 2008 .
[17] C. Roberts,et al. A thermal conductivity model for microporous insulations in gaseous environments , 2019, International Journal of Heat and Mass Transfer.
[18] A. E. Ringwood,et al. The binary systems FeS-MgS and FeS-MnS: Mössbauer spectroscopy of the B1 solid solutions and high-pressure phase equilibria , 1984 .
[19] R. Huggins,et al. Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .
[20] Ronald A. Guidotti,et al. Thermally activated ( thermal ) battery technology Part IV. Anode materials , 2008 .
[21] Ihsan Barin,et al. Thermochemical properties of inorganic substances: Supplement , 1973 .
[22] F. Kubel,et al. Crystal structure of dilithiumsulfíde, Li2S , 1999 .
[23] L. Cai,et al. Mathematical modeling of the LiAl/FeS2 high temperature battery system , 2012 .
[24] D. D. Wagman,et al. The NBS tables of chemical thermodynamic properties : selected values for inorganic and C1 and C2 organic substances in SI units , 1982 .
[25] Bong Jae Lee,et al. Heat transfer analysis of a high-power and large-capacity thermal battery and investigation of effective thermal model , 2019, Journal of Power Sources.
[26] G. Faeth,et al. Phase Equilibria in the Li-LiF-Li2S System , 1978 .
[27] R. Guidotti,et al. Thermal activated (“thermal”) battery technology: Part IIIb. Sulfur and oxide-based cathode materials , 2008 .
[28] R. Huggins,et al. Chemical diffusion in intermediate phases in the lithium-tin system , 1980 .
[29] K. Long,et al. Modeling Separator Deformation and Electrolyte Flow in Thermally-Activated Batteries. , 2012 .
[30] Ronald A. Guidotti,et al. Thermally activated ("thermal") battery technology Part I: An overview , 2006 .
[31] Kenneth C. Mills,et al. Thermodynamic data for inorganic sulphides, selenides and tellurides , 1974 .
[32] P. Carman. Fluid flow through granular beds , 1997 .
[33] Tamara G. Kolda,et al. An overview of the Trilinos project , 2005, TOMS.