Longevous Sodium Metal Anodes with High Areal Capacity Enabled by 3D-Printed Sodiophilic Monoliths.

Sodium metal anode, featured by favorable redox voltage and material availability, offers a feasible avenue toward high-energy-density devices. However, uneven metal deposition and notorious dendrite proliferation synchronously hamper its broad application prospects. Here, a three-dimensional (3D) porous hierarchical silver/reduced graphene oxide (Ag/rGO) microlattice aerogel is devised as a sodiophilic monolith, which is realized by a direct ink writing 3D printing technology. The thus-printed Na@Ag/rGO electrode retains a durable cycling lifespan over 3100 h at 3.0 mA cm-2/1.0 mAh cm-2, concurrently harvesting a high average Coulombic efficiency of 99.80%. Impressively, it can be cycled for 340 h at a stringent condition of 6.0 mA cm-2 with a large areal capacity of 60.0 mAh cm-2 (∼1036.31 mAh g-1). Meanwhile, the well-regulated Na ion flux and uniform deposition kinetics are systematically probed by comprehensive electroanalytical analysis and theoretical simulations. As a result, assembled Na metal full battery delivers a long cycling sustainability over 500 cycles at 100 mA g-1 with a low per-cycle decay of 0.85%. The proposed strategy might inspire the construction of high-capacity Na metal anodes with appealing stability.

[1]  H. Yang,et al.  Tactics to optimize conversion-type metal fluoride/sulfide/oxide cathodes toward advanced lithium metal batteries , 2023, Nano Research.

[2]  Min-Sung Kim,et al.  Hybridization of Layered Titanium Oxides and Covalent Organic Nanosheets into Hollow Spheres for High-Performance Sodium-Ion Batteries with Boosted Electrical/Ionic Conductivity and Ultralong Cycle Life. , 2023, ACS nano.

[3]  Y. Liu,et al.  Yolk-Shell Sb@Void@Graphdiyne Nanoboxes for High-Rate and Long Cycle Life Sodium-Ion Batteries. , 2023, ACS nano.

[4]  Dezhi Kong,et al.  3D Printed Au/rGO Microlattice Host for Dendrite-Free Sodium Metal Anode , 2022, Energy Storage Materials.

[5]  S. Dou,et al.  3D Sodiophilic Ti3C2 MXene@g-C3N4 Hetero-Interphase Raises the Stability of Sodium Metal Anodes. , 2022, ACS nano.

[6]  Lin Li,et al.  Developing High‐Performance Metal Selenides for Sodium‐Ion Batteries , 2022, Advanced Functional Materials.

[7]  Can Guo,et al.  Synergistic Manipulation of Hydrogen Evolution and Zinc Ion Flux in Metal-Covalent Organic Frameworks for Dendrite-free Zn-based Aqueous Batteries. , 2022, Angewandte Chemie.

[8]  Zhicong Shi,et al.  Ag Nanoparticles Embedded in Sodiophilic Carbon Host Achieving High-power Na Metal Batteries , 2022, Chemical Engineering Journal.

[9]  Dezhi Kong,et al.  Sodiophilic silver nanoparticles anchoring on vertical graphene modified carbon cloth for longevous sodium metal anodes , 2022, Ionics.

[10]  Zixuan Wang,et al.  3D-Printed Sodiophilic V2CTx/rGO-CNT MXene Microgrid Aerogel for Stable Na Metal Anode with High Areal Capacity. , 2022, ACS nano.

[11]  Dezhi Kong,et al.  Three-dimensional Ag/carbon nanotube-graphene foam for high performance dendrite free lithium/sodium metal anodes , 2022, Journal of Materials Science & Technology.

[12]  Xingguo Qi,et al.  Interfacial engineering to achieve an energy density of over 200 Wh kg−1 in sodium batteries , 2022, Nature Energy.

[13]  Jingyu Sun,et al.  Printing‐Scalable Ti3C2Tx MXene‐Decorated Janus Separator with Expedited Zn2+ Flux toward Stabilized Zn Anodes , 2022, Advanced Functional Materials.

[14]  Yifeng Cheng,et al.  Enabling Ultrastable Alkali Metal Anodes by Artificial Solid Electrolyte Interphase Fluorination. , 2022, Nano letters.

[15]  Han Yang,et al.  Direct-ink writing 3D printed energy storage devices: From material selectivity, design and optimization strategies to diverse applications , 2022, Materials Today.

[16]  B. Boyce,et al.  Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries. , 2022, Chemical reviews.

[17]  Jingyu Sun,et al.  Bimetallic Selenide Decorated Nanoreactor Synergizing Confinement and Electrocatalysis of Se Species for 3D-Printed High-Loading K-Se Batteries. , 2022, ACS nano.

[18]  Yang Jiang,et al.  Fabricating Na/In/C Composite Anode with Natrophilic Na–In Alloy Enables Superior Na Ion Deposition in the EC/PC Electrolyte , 2021, Nano-Micro Letters.

[19]  Guanwu Li,et al.  Tribo-electrochemistry induced artificial solid electrolyte interface by self-catalysis , 2021, Nature Communications.

[20]  Jang‐Kyo Kim,et al.  NaF-rich Solid Electrolyte Interphase for Dendrite-free Sodium Metal Batteries , 2021, Energy Storage Materials.

[21]  Y. Miao,et al.  Asymmetric Sodiophilic Host Based on a Ag-Modified Carbon Fiber Framework for Dendrite-Free Sodium Metal Anodes. , 2021, ACS applied materials & interfaces.

[22]  Tongtong Jiang,et al.  N-doped carbon tubes with sodiophilic sites for dendrite free sodium metal anode , 2021 .

[23]  C. Shu,et al.  Modulating Sand’s time by ion-transport-enhancement toward dendrite-free lithium metal anode , 2021, Nano Research.

[24]  Haichang Guo,et al.  Highly Thermally Conductive 3D Printed Graphene Filled Polymer Composites for Scalable Thermal Management Applications. , 2021, ACS nano.

[25]  Xiaolei Wang,et al.  3D Hierarchical Carbon-Rich Micro-/Nanomaterials for Energy Storage and Catalysis , 2021, Electrochemical Energy Reviews.

[26]  Hengxing Ji,et al.  Guiding Sodium Deposition through a Sodiophobic–Sodiophilic Gradient Interfacial Layer for Highly Stable Sodium Metal Anodes , 2021 .

[27]  K. Shen,et al.  Tortuosity Modulation toward High‐Energy and High‐Power Lithium Metal Batteries , 2021, Advanced Energy Materials.

[28]  Guoxiu Wang,et al.  Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-dimensional skeleton for dendrite-free sodium metal anodes , 2021 .

[29]  Chun‐Sing Lee,et al.  3D Ag@C Cloth for Stable Anode Free Sodium Metal Batteries. , 2021, Small methods.

[30]  Jingyu Sun,et al.  Universal in Situ Crafted MOx-MXene Heterostructures as Heavy and Multifunctional Hosts for 3D-Printed Li-S Batteries. , 2020, ACS nano.

[31]  Jong‐Won Lee,et al.  Bottom-Up Lithium Growth Triggered by Interfacial Activity Gradient on Porous Framework for Lithium-Metal Anode , 2020 .

[32]  B. Dunn,et al.  Understanding and applying coulombic efficiency in lithium metal batteries , 2020 .

[33]  I. Han,et al.  High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes , 2020 .

[34]  Tingting Xu,et al.  Advanced carbon nanostructures for future high performance sodium metal anodes , 2020 .

[35]  Martin Pumera,et al.  3D Printing for Electrochemical Energy Applications. , 2020, Chemical reviews.

[36]  Zhengnan Tian,et al.  3D Printing of Porous Nitrogen-Doped Ti3C2 MXene Scaffolds for High-Performance Sodium-Ion Hybrid Capacitors. , 2020, ACS nano.

[37]  Yong Cheng,et al.  Encapsulating lithium and sodium inside amorphous carbon nanotubes through gold-seeded growth , 2019 .

[38]  Liangbing Hu,et al.  Thick Electrode Batteries: Principles, Opportunities, and Challenges , 2019, Advanced Energy Materials.

[39]  Chilin Li,et al.  Liquid Polydimethylsiloxane Grafting to Enable Dendrite‐Free Li Plating for Highly Reversible Li‐Metal Batteries , 2019, Advanced Functional Materials.

[40]  Yusheng Zhao,et al.  3D Printing of Hierarchical Graphene Lattice for Advanced Na Metal Anodes , 2019, ACS Applied Energy Materials.

[41]  Eunsu Paek,et al.  Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. , 2019, Chemical reviews.

[42]  K. Edström,et al.  Lightweight, Thin, and Flexible Silver Nanopaper Electrodes for High‐Capacity Dendrite‐Free Sodium Metal Anodes , 2018, Advanced Functional Materials.

[43]  Wei Zhang,et al.  Zipper‐Inspired SEI Film for Remarkably Enhancing the Stability of Li Metal Anode via Nucleation Barriers Controlled Weaving of Lithium Pits , 2018 .

[44]  Hongli Zhu,et al.  Stable Metal Anode enabled by Porous Lithium Foam with Superior Ion Accessibility , 2018, Advanced materials.

[45]  Bing Sun,et al.  Dendrite‐Free Sodium‐Metal Anodes for High‐Energy Sodium‐Metal Batteries , 2018, Advanced materials.

[46]  D. Fang,et al.  In operando observation of chemical and mechanical stability of Li and Na dendrites under quasi-zero electrochemical field , 2018 .

[47]  Bin Li,et al.  3D Printing Sulfur Copolymer‐Graphene Architectures for Li‐S Batteries , 2018 .

[48]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[49]  Hyun-Wook Lee,et al.  Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth , 2016, Nature Energy.

[50]  D. Choi,et al.  Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. , 2014, Nano letters.

[51]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[52]  Y. Liu,et al.  Stabilizing Sodium Metal Anode by In-Situ Formed Ag Metal Layer , 2022, SSRN Electronic Journal.