Review on the Production of Polysaccharide Aerogel Particles

A detailed study of the production of polysaccharide aerogel (bio-aerogel) particles from lab to pilot scale is surveyed in this article. An introduction to various droplets techniques available in the market is given and compared with the lab scale production of droplets using pipettes and syringes. An overview of the mechanisms of gelation of polysaccharide solutions together with non-solvent induced phase separation option is then discussed in the view of making wet particles. The main steps of particle recovery and solvent exchange are briefly described in order to pass through the final drying process. Various drying processes are overviewed and the importance of supercritical drying is highlighted. In addition, we present the characterization techniques to analyse the morphology and properties of the aerogels. The case studies of bio-aerogel (agar, alginate, cellulose, chitin, κ-carrageenan, pectin and starch) particles are reviewed. Potential applications of polysaccharide aerogel particles are briefly given. Finally, the conclusions summarize the prospects of the potential scale-up methods for producing bio-aerogel particles.

[1]  I. Smirnova,et al.  Model development for sc-drying kinetics of aerogels: Part 2. Packed bed of spherical particles , 2019, The Journal of Supercritical Fluids.

[2]  O. Olatunji,et al.  Alginates , 2019 .

[3]  U. Kulozik,et al.  Novel technique for measurement of coating layer thickness of fine and porous particles using focused ion beam , 2019, Particuology.

[4]  C. Alvarez‐Lorenzo,et al.  From the printer to the lungs: Inkjet-printed aerogel particles for pulmonary delivery , 2019, Chemical Engineering Journal.

[5]  T. Budtova,et al.  Tuning structure and properties of pectin aerogels , 2018, European Polymer Journal.

[6]  U. Kulozik,et al.  Tailor made protein based aerogel particles from egg white protein, whey protein isolate and sodium caseinate: Influence of the preceding hydrogel characteristics , 2018, Food Hydrocolloids.

[7]  I. Smirnova,et al.  Model development for sc-drying kinetics of aerogels: Part 1. Monoliths and single particles , 2018, The Journal of Supercritical Fluids.

[8]  T. Budtova,et al.  Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels. , 2018, Carbohydrate polymers.

[9]  T. Budtova,et al.  Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads , 2018 .

[10]  I. Smirnova,et al.  Polysaccharide-Based Aerogel Bead Production via Jet Cutting Method , 2018, Materials.

[11]  Gustav Nyström,et al.  Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. , 2018, Angewandte Chemie.

[12]  I. Smirnova,et al.  First Evidence of Solvent Spillage under Subcritical Conditions in Aerogel Production , 2018, Industrial & Engineering Chemistry Research.

[13]  A. Wolfson,et al.  Renewable Polysaccharides as Supports for Palladium Phosphine Catalysts , 2018, Polymers.

[14]  Yu-Zhong Wang,et al.  Cellulose Aerogels: Synthesis, Applications, and Prospects , 2018, Polymers.

[15]  I. Smirnova,et al.  A redox strategy to tailor the release properties of Fe(III)-alginate aerogels for oral drug delivery. , 2018, Carbohydrate polymers.

[16]  Cinzia Buratti,et al.  Optical, thermal, and energy performance of advanced polycarbonate systems with granular aerogel , 2018 .

[17]  Changren Zhou,et al.  Preparation of chitosan/lanthanum hydroxide composite aerogel beads for higher phosphorus adsorption , 2018 .

[18]  I. Smirnova,et al.  Non-Conventional Methods for Gelation of Alginate , 2018, Gels.

[19]  N. Hüsing,et al.  Current Status, Opportunities and Challenges in Catalytic and Photocatalytic Applications of Aerogels: Environmental Protection Aspects , 2018 .

[20]  I. Smirnova,et al.  Amorphization of drugs by adsorptive precipitation from supercritical solutions: A review , 2018 .

[21]  M. Alnaief,et al.  Effect of processing parameters on preparation of carrageenan aerogel microparticles. , 2018, Carbohydrate polymers.

[22]  S. Zhai,et al.  Polyethylenimine-functionalized cellulose aerogel beads for efficient dynamic removal of chromium( vi ) from aqueous solution , 2017 .

[23]  T. Budtova,et al.  Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials. , 2017, Biomacromolecules.

[24]  S. Chin,et al.  Porous Cellulose Beads Fabricated from Regenerated Cellulose as Potential Drug Delivery Carriers , 2017 .

[25]  S. Zhai,et al.  Preparation of PEI/CS aerogel beads with a high density of reactive sites for efficient Cr(VI) sorption: batch and column studies , 2017 .

[26]  T. Rosenau,et al.  Aerogels: Cellulose-Based , 2017 .

[27]  L. Bergström,et al.  Nanocellulose-based foams and aerogels: processing, properties, and applications , 2017 .

[28]  M. A. Meador,et al.  Polyimide Aerogels Using Triisocyanate as Cross-linker. , 2017, ACS applied materials & interfaces.

[29]  H. García,et al.  Chitosan-graphene oxide films and CO2-dried porous aerogel microspheres: Interfacial interplay and stability. , 2017, Carbohydrate polymers.

[30]  Jin Wu,et al.  Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends , 2017 .

[31]  F. Goycoolea,et al.  Supercritical CO2 dried chitosan nanoparticles: production and characterization , 2017 .

[32]  I. Smirnova,et al.  Aerogels in Chemical Engineering: Strategies Toward Tailor-Made Aerogels. , 2017, Annual review of chemical and biomolecular engineering.

[33]  Todd Hoare,et al.  Review of Hydrogels and Aerogels Containing Nanocellulose , 2017 .

[34]  I. Smirnova,et al.  Mesoporous guar galactomannan based biocomposite aerogels through enzymatic crosslinking , 2017 .

[35]  E. Belloni,et al.  Preparation and characterization of polyurethane/silica aerogel nanocomposite materials , 2017 .

[36]  Y. Grohens,et al.  Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. , 2017, Carbohydrate polymers.

[37]  H. Minami,et al.  Encapsulation of Either Hydrophilic or Hydrophobic Substances in Spongy Cellulose Particles. , 2017, ACS applied materials & interfaces.

[38]  Yulin Deng,et al.  Cellulose Nanofibril Based-Aerogel Microreactors: A High Efficiency and Easy Recoverable W/O/W Membrane Separation System , 2017, Scientific Reports.

[39]  T. Budtova,et al.  Nanostructured interpenetrated organic-inorganic aerogels with thermal superinsulating properties , 2016 .

[40]  T. Budtova,et al.  Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release. , 2016, Carbohydrate polymers.

[41]  S. Heinrich,et al.  Alginate-based hybrid aerogel microparticles for mucosal drug delivery. , 2016, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[42]  H. Maleki Recent advances in aerogels for environmental remediation applications: A review , 2016 .

[43]  Paola Russo,et al.  Prilling and supercritical drying: A successful duo to produce core-shell polysaccharide aerogel beads for wound healing. , 2016, Carbohydrate polymers.

[44]  O. Çiftçi,et al.  Formation of nanoporous aerogels from wheat starch. , 2016, Carbohydrate polymers.

[45]  H. García,et al.  Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres. , 2016, Carbohydrate polymers.

[46]  Wei Sun,et al.  Solution-processable polyimide aerogels with high hydrophobicity , 2016 .

[47]  A. Potthast,et al.  Nanostructured Cellulose II Gel Consisting of Spherical Particles , 2016 .

[48]  T. Budtova,et al.  Cellulose aero-, cryo- and xerogels: towards understanding of morphology control , 2016, Cellulose.

[49]  T. Rosenau,et al.  Impact of selected solvent systems on the pore and solid structure of cellulose aerogels , 2016, Cellulose.

[50]  L. Ratke,et al.  Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures , 2016 .

[51]  T. Budtova,et al.  Cellulose in NaOH–water based solvents: a review , 2016, Cellulose.

[52]  I. Smirnova,et al.  On the Road to Biopolymer Aerogels—Dealing with the Solvent , 2015, Gels.

[53]  M. Schnellenbach-Held,et al.  Development of High Performance Aerogel Concrete , 2015 .

[54]  Ž. Knez,et al.  Fast production of high-methoxyl pectin aerogels for enhancing the bioavailability of low-soluble drugs , 2015 .

[55]  S. Heinrich,et al.  Influence of coating and wetting on the mechanical behaviour of highly porous cylindrical aerogel particles , 2015 .

[56]  L. Ratke,et al.  The effect of zinc oxide (ZnO) addition on the physical and morphological properties of cellulose aerogel beads , 2015 .

[57]  H. García,et al.  Copper Nanoparticles Stabilized in a Porous Chitosan Aerogel as a Heterogeneous Catalyst for C−S Cross‐coupling , 2015 .

[58]  Rui L. Reis,et al.  Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering , 2015 .

[59]  T. Budtova,et al.  Cellulose-silica aerogels. , 2015, Carbohydrate polymers.

[60]  T. Rosenau,et al.  Preparation and Reinforcement of Dual‐Porous Biocompatible Cellulose Scaffolds for Tissue Engineering , 2015, Macromolecular materials and engineering.

[61]  T. Budtova,et al.  Xerocellulose: lightweight, porous and hydrophobic cellulose prepared via ambient drying , 2015, Journal of Materials Science.

[62]  Xuan Luo,et al.  Rapid and facile synthesis of a low-cost monolithic polyamide aerogel via sol–gel technology , 2015 .

[63]  I. Smirnova,et al.  Polysaccharide-based aerogel microspheres for oral drug delivery. , 2015, Carbohydrate polymers.

[64]  M. Tako The Principle of Polysaccharide Gels , 2015 .

[65]  I. Smirnova,et al.  A novel approach to alginate aerogels: carbon dioxide induced gelation , 2015 .

[66]  Ž. Knez,et al.  Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. , 2014, Carbohydrate polymers.

[67]  A. Fu,et al.  Preparation of cellulose based microspheres by combining spray coagulating with spray drying. , 2014, Carbohydrate polymers.

[68]  D. Petri,et al.  Multifunctional cellulose beads and their interaction with gram positive bacteria. , 2014, Biomacromolecules.

[69]  S. Sharma,et al.  Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. , 2014, Biomacromolecules.

[70]  Laurent Bonnet,et al.  Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. , 2014, Biomacromolecules.

[71]  L. Ratke,et al.  Facile preparation of monolithic κ-carrageenan aerogels. , 2014, Soft matter.

[72]  N. Sandler,et al.  Anionic cellulose beads for drug encapsulation and release , 2014, Cellulose.

[73]  M. A. Jackson,et al.  Starch aerogel beads obtained from inclusion complexes prepared from high amylose starch and sodium palmitate , 2014 .

[74]  V. Tan,et al.  Advanced thermal insulation and absorption properties of recycled cellulose aerogels , 2014 .

[75]  Y. Takeda,et al.  The Principles of Starch Gelatinization and Retrogradation , 2014 .

[76]  C. Rudaz Cellulose and Pectin Aerogels : Towards their nano-structuration , 2013 .

[77]  Yang Cao,et al.  An environment‐friendly thermal insulation material from cellulose and plasma modification , 2013 .

[78]  M. Tenkanen,et al.  Prospects of polysaccharide aerogels as modern advanced food materials , 2013 .

[79]  R. Reis,et al.  Design and functionalization of chitin-based microsphere scaffolds , 2013 .

[80]  Hongbing Lu,et al.  Fractal Multiscale Nanoporous Polyurethanes: Flexible to Extremely Rigid Aerogels from Multifunctional Small Molecules , 2013 .

[81]  I. Smirnova,et al.  Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems , 2013 .

[82]  Rajendar R. Mallepally,et al.  Superabsorbent alginate aerogels , 2013 .

[83]  S. Jana,et al.  Reinforcement of silica aerogels using silane-end-capped polyurethanes. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[84]  P. Fardim,et al.  Physicochemical design of the morphology and ultrastructure of cellulose beads. , 2013, Carbohydrate polymers.

[85]  W. Thielemans,et al.  Chitin Nanowhisker Aerogels , 2013, ChemSusChem.

[86]  E. Yilmaz,et al.  Preparation of Chitin-g-poly(4-vinylpyridine) Beads , 2013 .

[87]  U. Kulozik,et al.  Preparation of novel whey protein-based aerogels as drug carriers for life science applications , 2012 .

[88]  Irina Smirnova,et al.  Dried chitosan-gels as organocatalysts for the production of biomass-derived platform chemicals , 2012 .

[89]  A. Roig,et al.  Design of biocompatible magnetic pectin aerogel monoliths and microspheres , 2012 .

[90]  F. Quignard,et al.  New mixed lanthanum- and alkaline-earth cation-containing basic catalysts obtained by an alginate route , 2012 .

[91]  F. Renzo,et al.  Controlled synthesis from alginate gels of cobalt–manganese mixed oxide nanocrystals with peculiar magnetic properties , 2012 .

[92]  A. El Kadib,et al.  Chitosan bio-based organic-inorganic hybrid aerogel microspheres. , 2012, Chemistry.

[93]  C. Erkey,et al.  Synthesis of nanostructured materials using supercritical CO2: Part I. Physical transformations , 2012, Journal of Materials Science.

[94]  L. Lucia,et al.  Polysaccharide Building Blocks: A Sustainable Approach to the Development of Renewable Biomaterials , 2012 .

[95]  Jie Cai,et al.  Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. , 2012, Angewandte Chemie.

[96]  R. Rogers,et al.  Ionic liquid processing of cellulose. , 2012, Chemical Society reviews.

[97]  I. Smirnova,et al.  Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems , 2011 .

[98]  A. J. Hunt,et al.  Chitosan Aerogels Exhibiting High Surface Area for Biomedical Application: Preparation, Characterization, and Antibacterial Study , 2011 .

[99]  A. El Kadib,et al.  Nanosized vanadium, tungsten and molybdenum oxide clusters grown in porous chitosan microspheres as promising hybrid materials for selective alcohol oxidation. , 2011, Chemistry.

[100]  L. Ratke Monoliths and Fibrous Cellulose Aerogels , 2011 .

[101]  M. Bousmina,et al.  Chitosan templated synthesis of porous metal oxide microspheres with filamentary nanostructures , 2011 .

[102]  Weiqing Liu,et al.  Influence of ZnO on the properties of dilute and semi-dilute cellulose-NaOH-water solutions , 2011 .

[103]  A. Sato,et al.  κ-Carrageenan–sodium caseinate microgel production by atomization: Critical analysis of the experimental procedure , 2011 .

[104]  F. Renzo,et al.  Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels , 2011 .

[105]  F. Renzo,et al.  Natural materials with high surface area. Physisorption methods for the characterization of the texture and surface of polysaccharide aerogels , 2011 .

[106]  I. Smirnova,et al.  Preparation of biodegradable nanoporous microspherical aerogel based on alginate , 2011 .

[107]  T. Budtova,et al.  Wet and dry highly porous cellulose beads from cellulose–NaOH–water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles , 2011 .

[108]  Tatiana Budtova,et al.  Aerocellulose from cellulose–ionic liquid solutions: Preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes , 2011 .

[109]  Lina Zhang,et al.  Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. , 2010, Journal of chromatography. A.

[110]  F. Quignard,et al.  Chitosan aerogel: a recyclable, heterogeneous organocatalyst for the asymmetric direct aldol reaction in water. , 2010, Chemical communications.

[111]  L. Heath,et al.  Cellulose nanowhisker aerogels , 2010 .

[112]  Cristhian Almeida-Rivera,et al.  Modelling and experimental validation of emulsification processes in continuous rotor-stator units , 2010, Comput. Chem. Eng..

[113]  Antje Potthast,et al.  Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. , 2010, Macromolecular bioscience.

[114]  M. Edirisinghe,et al.  One-step electrohydrodynamic production of drug-loaded micro- and nanoparticles , 2010, Journal of The Royal Society Interface.

[115]  C. Sotiriou-Leventis,et al.  Click Synthesis of Monolithic Silicon Carbide Aerogels from Polyacrylonitrile-Coated 3D Silica Networks , 2010 .

[116]  J. Clark,et al.  Pectin-derived porous materials. , 2010, Chemistry.

[117]  R. Neubert,et al.  Polysaccharide-based aerogels as drug carriers , 2009 .

[118]  E. Chan,et al.  Prediction models for shape and size of ca-alginate macrobeads produced through extrusion-dripping method. , 2009, Journal of colloid and interface science.

[119]  T. P. Braga,et al.  Synthesis of hybrid mesoporous spheres using the chitosan as template , 2009 .

[120]  L. Lucia,et al.  Novel preparation and characterization of cellulose microparticles functionalized in ionic liquids. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[121]  A. J. Hunt,et al.  Preparation of Chitosan Based Scaffolds Using Supercritical Carbon Dioxide , 2009 .

[122]  F. Quignard,et al.  Palladium Coordination Biopolymer: A Versatile Access to Highly Porous Dispersed Catalyst for Suzuki Reaction , 2009 .

[123]  F. Renzo,et al.  Alginate aerogels as adsorbents of polar molecules from liquid hydrocarbons. Hexanol as probe molecule. , 2009 .

[124]  O. Aaltonen,et al.  The preparation of lignocellulosic aerogels from ionic liquid solutions , 2009 .

[125]  Tatiana Budtova,et al.  New nanostructured carbons based on porous cellulose: Elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis , 2008 .

[126]  Olli Ikkala,et al.  Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities , 2008 .

[127]  F. Quignard,et al.  Nanostructure of calcium alginate aerogels obtained from multistep solvent exchange route. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[128]  F. Renzo,et al.  Aerogel materials from marine polysaccharides , 2008 .

[129]  D. Poncelet,et al.  Comparison of different technologies for alginate beads production , 2008 .

[130]  F. Quignard,et al.  Design of Stable Nanoporous Hybrid Chitosan/Titania as Cooperative Bifunctional Catalysts , 2008 .

[131]  F. Quignard,et al.  Cation enhanced hydrophilic character of textured alginate gel beads , 2007 .

[132]  J. Innerlohinger,et al.  Aerocellulose: Aerogels and Aerogel‐like Materials made from Cellulose , 2006 .

[133]  P. Achard,et al.  Cellulose-based aerogels , 2006 .

[134]  F. Veiga,et al.  Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation. , 2006, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[135]  Ashley J. Wilson,et al.  Starbons: new starch-derived mesoporous carbonaceous materials with tunable properties. , 2006, Angewandte Chemie.

[136]  Yongxiao Bai,et al.  Preparation and characterization of crosslinked porous cellulose beads , 2006 .

[137]  Lai Wah Chan,et al.  Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system , 2006 .

[138]  J. Devoisselle,et al.  Pillaring effects in macroporous carrageenan-silica composite microspheres. , 2006, Journal of colloid and interface science.

[139]  Catarina P Reis,et al.  Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles , 2006, Journal of microencapsulation.

[140]  F. Renzo,et al.  Acidity of alginate aerogels studied by FTIR spectroscopy of probe molecules , 2005 .

[141]  P. Russo,et al.  Mechanisms of formation and disintegration of alginate beads obtained by prilling. , 2005, International journal of pharmaceutics.

[142]  F. Renzo,et al.  Hierarchical Macroporosity Induced by Constrained Syneresis in Core−Shell Polysaccharide Composites , 2005 .

[143]  Andreas Koschella,et al.  Solvents applied in the field of cellulose chemistry - a mini review , 2005 .

[144]  I. Smirnova,et al.  Dissolution Rate Enhancement by Adsorption of Poorly Soluble Drugs on Hydrophilic Silica Aerogels , 2005, Pharmaceutical development and technology.

[145]  Wolfgang Arlt,et al.  Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems , 2004 .

[146]  J. Xu,et al.  Cross‐linking agents for the protection of lyocell against fibrillation: synthesis, application and technical assessment of 2,4‐diacrylamidobenzenesulphonic acid , 2004 .

[147]  J. Devoisselle,et al.  Porous chitosan-silica hybrid microspheres as a potential catalyst , 2004 .

[148]  Hao Jin,et al.  Nanofibrillar cellulose aerogels , 2004 .

[149]  Gary B. Tatterson,et al.  Mechanically Stirred Vessels , 2004 .

[150]  F. Quignard,et al.  Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry , 2003 .

[151]  Stefan Fischer,et al.  Inorganic Molten Salts as Solvents for Cellulose , 2003 .

[152]  I. Smirnova,et al.  Adsorption of Drugs on Silica Aerogels , 2003 .

[153]  T. Budtova,et al.  Rheological properties and gelation of aqueous cellulose-NaOH solutions. , 2003, Biomacromolecules.

[154]  C. Kiparissides,et al.  Synthesis and characterization of cross-linked chitosan microspheres for drug delivery applications , 2003 .

[155]  E. Denkbaş,et al.  Human serum albumin (HSA) adsorption with chitosan microspheres , 2002 .

[156]  A. Pierre,et al.  Chemistry of aerogels and their applications. , 2002, Chemical reviews.

[157]  D. Stefanescu Science and Engineering of Casting Solidification , 2002 .

[158]  Robin D. Rogers,et al.  Dissolution of Cellose with Ionic Liquids , 2002 .

[159]  D. Poncelet,et al.  Production of Alginate Beads by Emulsification/Internal Gelation , 2001 .

[160]  Bing M. Fung,et al.  Organic Aerogels with Very High Impact Strength , 2001 .

[161]  G. Scherer,et al.  Effects upon Nitrogen Sorption Analysis in Aerogels. , 2001, Journal of colloid and interface science.

[162]  X. Z. Shu, K. J. Zhu Chitosan/gelatin microspheres prepared by modified emulsification and ionotropic gelation , 2001 .

[163]  K. Zhu,et al.  A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. , 2000, International journal of pharmaceutics.

[164]  Jon A. Rowley,et al.  Controlling Mechanical and Swelling Properties of Alginate Hydrogels Independently by Cross-Linker Type and Cross-Linking Density , 2000 .

[165]  H. Ichikawa,et al.  Chitosan-Gadopentetic Acid Complex Nanoparticles for Gadolinium Neutron-Capture Therapy of Cancer: Preparation by Novel Emulsion-Droplet Coalescence Technique and Characterization , 1999, Pharmaceutical Research.

[166]  U. Schubert,et al.  Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.

[167]  U. Prüße,et al.  Improvement of the Jet Cutting Method for the Preparation of Spherical Particles from Viscous Polymer Solutions , 1998 .

[168]  P. Perugini,et al.  Evaluation of process parameters involved in chitosan microsphere preparation by the o/w/o multiple emulsion method. , 1996, Journal of microencapsulation.

[169]  M. Goosen,et al.  A Parallel plate electrostatic droplet generator: Parameters affecting microbead size , 1994, Applied Microbiology and Biotechnology.

[170]  Y. Lepage,et al.  Studies on Small (<300 μm) Microcapsules: II — Parameters Governing the Production of Alginate Beads by High Voltage Electrostatic Pulses , 1994, Cell transplantation.

[171]  M. Goosen,et al.  Electrostatic droplet generation: Mechanism of polymer droplet formation , 1994 .

[172]  T. Pal,et al.  Standardization of a newly designed vibrating capillary apparatus for the preparation of microcapsules , 1993 .

[173]  T. Chandy,et al.  Chitosan matrix for oral sustained delivery of ampicillin. , 1993, Biomaterials.

[174]  M. Rinaudo Gelation of Polysaccharides , 1993 .

[175]  L. Piculell,et al.  Effects of specific anion binding on the helix-coil transition of lower charged carrageenans. NMR data and conformational equilibria analyzed within the Poisson-Boltzmann cell model , 1992 .

[176]  A. Fournier,et al.  Production of alginate beads by emulsification/internal gelation. I. Methodology , 1992, Applied Microbiology and Biotechnology.

[177]  James M. Gallo,et al.  Optimized Formulation of Magnetic Chitosan Microspheres Containing the Anticancer Agent, Oxantrazole , 1992, Pharmaceutical Research.

[178]  V. B. Tolstoguzov,et al.  Studies on the mechanisms of gelation of kappa-carrageenan and agarose , 1991 .

[179]  L. Piculell,et al.  HELIX-COIL TRANSITIONS OF IONIC POLYSACCHARIDES ANALYZED WITHIN THE POISSON-BOLTZMANN CELL MODEL. IV, EFFECTS OF SITE-SPECIFIC COUNTERION BINDING , 1991 .

[180]  P. Walzel Zerstäuben von Flüssigkeiten , 1990 .

[181]  R. Arshady Albumin microspheres and microcapsules: Methodology of manufacturing techniques , 1990 .

[182]  S. Paoletti,et al.  Gelation mechanism of ionic polysaccharides , 1990 .

[183]  L. Piculell,et al.  Helix-coil transitions of ionic polysaccharides analyzed within the Poisson-Boltzmann cell model. 3. Solvent effects , 1990 .

[184]  H. Gesser,et al.  Aerogels and related porous materials , 1989 .

[185]  A. Lefebvre Atomization and Sprays , 1988 .

[186]  P. Belton,et al.  Interaction of group I cations with iota, kappa and lambda carrageenans studied by multinuclear n.m.r. , 1985 .

[187]  Richard C. Weatherwax,et al.  Collapse of cell-wall pores during drying of cellulose , 1977 .

[188]  Li Fu Chen,et al.  Physical characteristics of porous cellulose beads as supporting material for immobilized enzymes , 1976, Biotechnology and bioengineering.

[189]  B. Alince Porosity of swollen solvent-exchanged cellulose and its collapse during final liquid removal , 1975 .

[190]  P. Sherman,et al.  Factors affecting emulsion stability, and the HLB concept , 1972 .

[191]  D. H. Everett,et al.  Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry , 1972 .

[192]  A. Stamm,et al.  Penetration of cellulose fibers. , 1950, The Journal of physical and colloid chemistry.

[193]  S. S. Kistler,et al.  Coherent Expanded-Aerogels , 1932 .

[194]  S. Kistler,et al.  Coherent Expanded Aerogels and Jellies. , 1931, Nature.

[195]  D. Poncelet,et al.  Cell Microencapsulation: Dripping Methods. , 2017, Methods in molecular biology.

[196]  J. Bibette,et al.  Controlled production of sub-millimeter liquid core hydrogel capsules for parallelized 3D cell culture. , 2016, Lab on a chip.

[197]  E. Reverchon,et al.  Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. , 2013, Journal of pharmaceutical sciences.

[198]  A. Szczurek,et al.  New tannin–lignin aerogels , 2013 .

[199]  A. Potthast,et al.  Bacterial Cellulose Aerogels: From Lightweight Dietary Food to Functional Materials , 2012 .

[200]  I. Smirnova,et al.  In situ production of spherical aerogel microparticles , 2011 .

[201]  I. Smirnova Pharmaceutical Applications of Aerogels , 2011 .

[202]  G. Chinga-Carrasco,et al.  Cross-linking cellulose nanofibrils for potential elastic cryo-structured gels , 2011, Nanoscale research letters.

[203]  C. Erkey,et al.  Synthesis of nanostructured materials using supercritical CO2: Part II. Chemical transformations , 2011, Journal of Materials Science.

[204]  F. Quignard,et al.  From natural polysaccharides to materials for catalysis, adsorption, and remediation. , 2010, Topics in current chemistry.

[205]  T. Liebert Cellulose Solvents - Remarkable History, Bright Future , 2010 .

[206]  Thomas Heinze,et al.  Cellulose solvents : for analysis, shaping and chemical modification , 2010 .

[207]  M. Lightfoot A Fundamental Classification of Atomization Processes , 2009 .

[208]  H. Fink,et al.  Characterization of Highly Porous Materials from Cellulose Carbamate , 2008 .

[209]  T. Budtova,et al.  Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. , 2008, Biomacromolecules.

[210]  Eric Uerdingen,et al.  New Developments in Dissolving and Processing of Cellulose in Ionic Liquids , 2008 .

[211]  Lina Zhang,et al.  Unique gelation behavior of cellulose in NaOH/urea aqueous solution. , 2006, Biomacromolecules.

[212]  G. Glenn,et al.  Starch-Based Microcellular Foams , 2005 .

[213]  K. Vorlop,et al.  Formation of spherical chitosan biocatalysts by ionotropic gelation , 2004, Biotechnology Letters.

[214]  K. Vorlop,et al.  Scale-up of the jetcutter technology , 2003 .

[215]  K. Vorlop,et al.  Bead production with JetCutting and rotating disc/nozzle technologies , 2002 .

[216]  E. Denkbaş,et al.  5-fluorouracil loaded chitosan microspheres for chemoembolization. , 1999, Journal of microencapsulation.

[217]  U. Prüße,et al.  New Process (Jet Cutting Method) for the Production of Spherical Beads from Highly Viscous Polymer Solutions , 1998 .

[218]  L. Lim,et al.  Chitosan Microspheres Prepared by Emulsification and Ionotropic Gelation , 1997 .

[219]  A. Lefebvre,et al.  EFFERVESCENT ATOMIZATION AT LOW MASS FLOW RATES. PART I: THE INFLUENCE OF SURFACE TENSION , 1993 .

[220]  E. Morris Molecular Interactions in Polysaccharide Gelation , 1986 .

[221]  O. Smidsrod,et al.  Synergistic gelation of alginates and pectins , 1986 .