A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions

Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and scalability required to systematically outmatch classical simulators. We analyse how fast gates could enable trapped-ion quantum processors to achieve the requisite scalability to outperform classical computers without error correction. We analyze the performance of a large-scale digital simulator, and find that fidelity of around 70% is realizable for π-pulse infidelities below 10−5 in traps subject to realistic rates of heating and dephasing. This scalability relies on fast gates: entangling gates faster than the trap period.

[1]  David J. Wineland,et al.  Trapped-ion quantum simulator , 1998 .

[2]  D. Hayes,et al.  Quantum control of qubits and atomic motion using ultrafast laser pulses , 2013, 1307.0557.

[3]  J. D. Wong-Campos,et al.  Sensing Atomic Motion from the Zero Point to Room Temperature with Ultrafast Atom Interferometry. , 2015, Physical review letters.

[4]  J Casanova,et al.  Digital quantum simulation of the Holstein model in trapped ions. , 2012, Physical review letters.

[5]  J. Chiaverini,et al.  Measurement of ion motional heating rates over a range of trap frequencies and temperatures , 2014, 1412.5119.

[6]  D. Kielpinski,et al.  Fast gates for ion traps by splitting laser pulses , 2012, 1211.7156.

[7]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[8]  P. Zoller,et al.  Coherent control of trapped ions using off-resonant lasers (13 pages) , 2005 .

[9]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[10]  Nikolay V Vitanov,et al.  High-fidelity local addressing of trapped ions and atoms by composite sequences of laser pulses. , 2011, Optics letters.

[11]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[12]  J J García-Ripoll,et al.  Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. , 2003, Physical review letters.

[13]  E. Solano,et al.  Digital quantum simulation of spin models with circuit quantum electrodynamics , 2015, 1502.06778.

[14]  L. Lamata,et al.  Efficient quantum simulation of fermionic and bosonic models in trapped ions , 2013, 1312.2849.

[15]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[16]  Joseph J. Hope,et al.  XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations , 2012, Comput. Phys. Commun..

[17]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[18]  J Casanova,et al.  Quantum simulation of interacting fermion lattice models in trapped ions. , 2011, Physical review letters.

[19]  R. Taylor,et al.  Stability thresholds and calculation techniques for fast entangling gates on trapped ions , 2016, 1601.03110.

[20]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[21]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[22]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[23]  T. Monz,et al.  Real-time dynamics of lattice gauge theories with a few-qubit quantum computer , 2016, Nature.

[24]  G. Stutter,et al.  Resolved-Sideband Laser Cooling in a Penning Trap. , 2014, Physical review letters.

[25]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[26]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[27]  N. S. Barnett,et al.  Private communication , 1969 .

[28]  Dieter Suter,et al.  Quantum simulation of a system with competing two- and three-body interactions. , 2008, Physical review letters.

[29]  L-M Duan Scaling ion trap quantum computation through fast quantum gates. , 2004, Physical review letters.

[30]  S. Ferrari,et al.  Author contributions , 2021 .

[31]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[32]  atthew,et al.  Ultrafast , high repetition rate , ultraviolet , fiber-laser-based source : application towards Yb + fast quantum-logic , 2016 .

[33]  H. Neven,et al.  Digitized adiabatic quantum computing with a superconducting circuit. , 2015, Nature.

[34]  A. Carvalho,et al.  Trapped ion scaling with pulsed fast gates , 2015, 1507.02783.

[35]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[36]  N. Vitanov,et al.  Smooth composite pulses for high-fidelity quantum information processing , 2011 .

[37]  Shi-Liang Zhu,et al.  Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams , 2006 .

[38]  T. R. Tan,et al.  High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits. , 2016, Physical review letters.

[39]  R. Barends,et al.  Digital quantum simulation of fermionic models with a superconducting circuit , 2015, Nature Communications.

[40]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[41]  Michael Niedermayr,et al.  Cryogenic surface ion trap based on intrinsic silicon , 2014 .

[42]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[43]  R. Feynman Simulating physics with computers , 1999 .

[44]  J Mizrahi,et al.  Ultrafast gates for single atomic qubits. , 2010, Physical review letters.

[45]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[46]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[47]  Marco Lanzagorta,et al.  Quantum Simulators , 2013 .

[48]  Shi-Liang Zhu,et al.  Trapped ion quantum computation with transverse phonon modes. , 2006, Physical review letters.

[49]  R. Laflamme,et al.  Digital quantum simulation of the statistical mechanics of a frustrated magnet , 2011, Nature Communications.

[50]  Schiffer Phase transitions in anisotropically confined ionic crystals. , 1993, Physical review letters.

[51]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[52]  C. Monroe,et al.  Ultrafast spin-motion entanglement and interferometry with a single atom. , 2012, Physical review letters.

[53]  F. Nori,et al.  Quantum Simulators , 2009, Science.

[54]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[55]  Vladimir S. Malinovsky,et al.  General theory of population transfer by adiabatic rapid passage with intense, chirped laser pulses , 2001 .