Line Intensities of CH3D in the Triad Region: 6-10 mu m

Abstract Line intensities of the three lowest fundamentals of the 12 CH 3 D Triad are modeled with an RMS of 3.2% using over 2100 observed values retrieved by multispectrum fitting of enriched sample spectra recorded with two Fourier transform spectrometers. The band strengths of the Triad in units of 10 −18  cm −1 /(molecule cm −2 ) at 296 K are, respectively, 2.33 for ν 6 ( E ) at 1161 cm −1 , 1.75 for ν 3 ( A 1 ) at 1307 cm −1 and 0.571 for ν 5 ( E ) at 1472 cm −1 . The total calculated absorption arising from 12 CH 3 D Triad fundamentals is 4.65×10 −18  cm −1 /(molecule cm −2 ) at 296 K. In addition, some 740 intensities of nine hotbands are fitted to 8.1%; most of the hotband measurements belong to 2 ν 6 − ν 6 and ν 3 + ν 6 − ν 3 near 1160 cm −1 , 2 ν 3 − ν 3 near 1290 cm −1 and ν 3 + ν 6 − ν 6 near 1304 cm −1 . The other observed hotbands are ν 5 + ν 6 − ν 6 , 2 ν 5 − ν 5 , ν 5 + ν 6 − ν 5 , ν 3 + ν 5 − ν 3 , and ν 3 +ν 5 −ν 5 .

[1]  Jean-Paul Champion,et al.  The MIRS computer package for modeling the rovibrational spectra of polyatomic molecules , 2003 .

[2]  O. Ulenikov,et al.  Study on the Rovibrational Interactions and a1/a2 Splittings in the ν3/ν5/ν6 Triad of CH3D , 2000 .

[3]  D. Chris Benner,et al.  Methane Line Parameters in HITRAN , 2003 .

[4]  A. Coustenis,et al.  The D/H Ratio in Methane in Titan: Origin and History , 2002 .

[5]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[6]  W. Olson,et al.  Determination of A0 for CH3D from perturbation-allowed transitions , 1986 .

[7]  T. Encrenaz The Chemical Atmospheric Composition of the Giant Planets , 1994 .

[8]  J. W. Straley,et al.  Vibrational intensities and bond moments in deuterated methanes , 1961 .

[9]  G. Tarrago,et al.  Triad νn(A1), νt(E), νt′(E) in C3v molecules: Energy and intensity formulation (computer programs) , 1986 .

[10]  W. Olson The infrared spectrum of CH3D. Ground state constants and perturbation allowed transitions , 1972 .

[11]  Jean-Paul Champion,et al.  Improved Algorithms for the Modeling of Vibrational Polyads of Polyatomic Molecules: Application toTd,Oh, andC3vMolecules , 1997 .

[12]  C. Rinsland,et al.  Multispectrum analysis of self- and N2-broadening, shifting and line mixing coefficients in the ν6 band of 12CH3D , 2002 .

[13]  O. Ulenikov,et al.  Rotational Analysis of the Ground State and the Lowest Fundamentals ν3, ν5, and ν6 of 13CH3D , 2000 .

[14]  A. A. Chursin,et al.  The 1997 spectroscopic GEISA databank , 1999 .

[15]  L. Brown,et al.  The infrared spectrum of CH 3 D between 900 and 3200 cm -1 : extended assignment and modeling , 2000 .

[16]  S. J. Kim,et al.  Spectral transmission measurements in the v6-fundamental of 12CH3D at 8.65 μm , 1981 .

[17]  Jean-Paul Champion,et al.  The High Resolution Infrared Spectrum of CH3D in the Region 900–1700 cm−1 , 1997 .

[18]  G. Guelachvili,et al.  Absorption of 12CH3D at 6–10 μm: Triad ν3, ν5, ν6 , 1987 .

[19]  C. Rinsland,et al.  Diode-laser measurements of intensities and halfwidths in the ν6 band of 12CH3D , 1987 .

[20]  A. G. Maki,et al.  Wavenumber calibration tables from heterodyne frequency measurements , 1991 .

[21]  V. Malathy Devi,et al.  Self- and N2-broadening, pressure induced shift and line mixing in the ν5 band of 12CH3D using a multispectrum fitting technique , 2002 .

[22]  T. Encrenaz,et al.  The deuterium abundance in Jupiter and Saturn from ISO-SWS observations , 2001 .

[23]  Ulenikov,et al.  On the Rotational Analysis of the Ground Vibrational State of CH3D Molecule. , 1999, Journal of molecular spectroscopy.

[24]  L. Brown,et al.  Analysis of the ?2/?4 dyad of 12CH4 and 13CH41 , 1989 .

[25]  Brown,et al.  The Hot Bands of Methane between 5 and 10 μm , 1996, Journal of molecular spectroscopy.

[26]  C. Lerot,et al.  H2-broadening coefficients in the ν3 band of CH3D at low temperatures , 2003 .

[27]  K. Tanabe,et al.  Calculation of infrared band intensities of various chlorinated methanes , 1970 .

[28]  V. M. Devi,et al.  Multispectrum analysis of self- and nitrogen-broadening, pressure shifting and line mixing in the ν3 parallel band of 12CH3D , 2002 .

[29]  S. Kondo,et al.  Infrared absorption intensities of methane and fluoromethanes , 1976 .

[30]  Jean-Paul Champion,et al.  Spherical Top Spectra , 1992 .

[31]  G. Tarrago,et al.  Absolute absorption intensities in the triad ν3, ν5, ν6 of 12CH3D at 6–10 μm , 1988 .

[32]  R. J. Boyle,et al.  Diode laser measurements of the band strengths of ν3 and ν6 in 12CH3D , 1985 .

[33]  V. M. Devi,et al.  A multispectrum nonlinear least squares fitting technique , 1995 .

[34]  V. M. Devi,et al.  Absolute intensities and self-, N2-, and air-broadened Lorentz halfwidths for selected lines in the nu3 band of 12CH3D from measurements with a tunable diode laser spectrometer. , 1986, Applied optics.

[35]  Robert A. Toth,et al.  nu-2 band of H2 O-16 - Line strengths and transition frequencies , 1991 .

[36]  L. Brown,et al.  Analysis of the CH3D nonad from 2000 to 3300 cm-1 , 2002 .

[37]  Francisco P. J. Valero,et al.  A laboratory study of the 8.65 μm fundamental of 12CH3D at temperatures relevant to titan's atmosphere☆ , 1983 .