Characterization and optimization of the detection sensitivity of an atomic force microscope for small cantilevers

The detection sensitivity of an atomic force microscope with optical beam deflection for small cantilevers is characterized experimentally and theoretically. An adjustable aperture is used to optimize the detection sensitivity for cantilevers of different length. With the aperture, the signal-to-noise ratio of cantilever deflection measurements is increased by a factor of 1.5 to nearly 3. A theoretical model is set up that generally describes the optical beam deflection detection in an atomic force microscope. This model is based on diffraction theory and includes the particular functional shape of the cantilever.

[1]  P. Hansma,et al.  An atomic-resolution atomic-force microscope implemented using an optical lever , 1989 .

[2]  Gus Gurley,et al.  Short cantilevers for atomic force microscopy , 1996 .

[3]  D. Rugar,et al.  Improved fiber‐optic interferometer for atomic force microscopy , 1989 .

[4]  Cleveland,et al.  Probing oscillatory hydration potentials using thermal-mechanical noise in an atomic-force microscope. , 1995, Physical review. B, Condensed matter.

[5]  Ute Rabe,et al.  Vibrations of free and surface‐coupled atomic force microscope cantilevers: Theory and experiment , 1996 .

[6]  P K Hansma,et al.  Direct observation of enzyme activity with the atomic force microscope. , 1994, Science.

[7]  C F Quate,et al.  Imaging crystals, polymers, and processes in water with the atomic force microscope. , 1989, Science.

[8]  Hemantha K. Wickramasinghe,et al.  Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .

[9]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[10]  G. Binnig,et al.  True Atomic Resolution by Atomic Force Microscopy Through Repulsive and Attractive Forces , 1993, Science.

[11]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[12]  John E. Sader,et al.  Parallel beam approximation for V‐shaped atomic force microscope cantilevers , 1995 .

[13]  C. Quate,et al.  Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators , 1995 .

[14]  M. Gustafsson,et al.  Scanning force microscope springs optimized for optical‐beam deflection and with tips made by controlled fracture , 1994 .

[15]  Deron A. Walters,et al.  Atomic force microscope for small cantilevers , 1997, Photonics West.

[16]  D. Sarid,et al.  Compact scanning-force microscope using a laser diode. , 1988, Optics letters.

[17]  N. Amer,et al.  Novel optical approach to atomic force microscopy , 1988 .

[18]  Paul K. Hansma,et al.  Studies of vibrating atomic force microscope cantilevers in liquid , 1996 .

[19]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[20]  Sidney R. Cohen,et al.  Force microscopy with a bidirectional capacitance sensor , 1990 .

[21]  Calvin F. Quate,et al.  Microfabrication of cantilever styli for the atomic force microscope , 1990 .

[22]  Egbert Oesterschulze,et al.  Fabrication of integrated diamond cantilevers with tips for SPM applications , 1997 .

[23]  Deron A. Walters,et al.  Atomic force microscopy using small cantilevers , 1997, Photonics West.

[24]  James K. Gimzewski,et al.  Surface stress in the self-assembly of alkanethiols on gold , 1997 .

[25]  Christian Schönenberger,et al.  A differential interferometer for force microscopy , 1989 .

[26]  J. Goodman Introduction to Fourier optics , 1969 .

[27]  Jan Greve,et al.  A detailed analysis of the optical beam deflection technique for use in atomic force microscopy , 1992 .

[28]  J. Köhler,et al.  The novolever: a new cantilever for scanning force microscopy microfabricated from polymeric materials , 1994 .

[29]  D. Sarid Scanning Force Microscopy: With Applications To Electric, Magnetic, And Atomic Forces , 1991 .