Cost-sensitive ensemble learning: a unifying framework

Over the years, a plethora of cost-sensitive methods have been proposed for learning on data when different types of misclassification errors incur different costs. Our contribution is a unifying framework that provides a comprehensive and insightful overview on cost-sensitive ensemble methods, pinpointing their differences and similarities via a fine-grained categorization. Our framework contains natural extensions and generalisations of ideas across methods, be it AdaBoost, Bagging or Random Forest, and as a result not only yields all methods known to date but also some not previously considered.

[1]  J. Suykens,et al.  Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research , 2015, Eur. J. Oper. Res..

[2]  Nuno Vasconcelos,et al.  Cost-Sensitive Boosting , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  W. Verbeke,et al.  Cost-sensitive learning for profit-driven credit scoring , 2020, J. Oper. Res. Soc..

[4]  Victor S. Sheng,et al.  Thresholding for Making Classifiers Cost-sensitive , 2006, AAAI.

[5]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Gholamreza Nakhaeizadeh,et al.  Cost-Sensitive Pruning of Decision Trees , 1994, ECML.

[7]  Andrew K. C. Wong,et al.  Classification of Imbalanced Data: a Review , 2009, Int. J. Pattern Recognit. Artif. Intell..

[8]  Peter D. Turney Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm , 1994, J. Artif. Intell. Res..

[9]  H. D. Brunk,et al.  AN EMPIRICAL DISTRIBUTION FUNCTION FOR SAMPLING WITH INCOMPLETE INFORMATION , 1955 .

[10]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[11]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[12]  B. Ripley Classification and Regression Trees , 2015 .

[13]  Gavin Brown,et al.  Calibrating AdaBoost for Asymmetric Learning , 2015, MCS.

[14]  Zhi-Hua Zhou,et al.  Exploratory Under-Sampling for Class-Imbalance Learning , 2006, Sixth International Conference on Data Mining (ICDM'06).

[15]  Kai Ming Ting,et al.  Inducing Cost-Sensitive Trees via Instance Weighting , 1998, PKDD.

[16]  Bianca Zadrozny,et al.  Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers , 2001, ICML.

[17]  Pedro M. Domingos MetaCost: a general method for making classifiers cost-sensitive , 1999, KDD '99.

[18]  Xin Yao,et al.  Diversity analysis on imbalanced data sets by using ensemble models , 2009, 2009 IEEE Symposium on Computational Intelligence and Data Mining.

[19]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[20]  Paul A. Viola,et al.  Fast and Robust Classification using Asymmetric AdaBoost and a Detector Cascade , 2001, NIPS.

[21]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[22]  Carla E. Brodley,et al.  Pruning Decision Trees with Misclassification Costs , 1998, ECML.

[23]  Sunil Vadera,et al.  A survey of cost-sensitive decision tree induction algorithms , 2013, CSUR.

[24]  Bianca Zadrozny,et al.  Learning and making decisions when costs and probabilities are both unknown , 2001, KDD '01.

[25]  John Langford,et al.  Cost-sensitive learning by cost-proportionate example weighting , 2003, Third IEEE International Conference on Data Mining.

[26]  Yufei Xia,et al.  Cost-sensitive boosted tree for loan evaluation in peer-to-peer lending , 2017, Electron. Commer. Res. Appl..

[27]  Francisco Herrera,et al.  A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[28]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[29]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[30]  Taghi M. Khoshgoftaar,et al.  RUSBoost: A Hybrid Approach to Alleviating Class Imbalance , 2010, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[31]  Yang Wang,et al.  Cost-sensitive boosting for classification of imbalanced data , 2007, Pattern Recognit..

[32]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[33]  Jim Georges,et al.  KDD'99 competition: knowledge discovery contest , 2000, SKDD.

[34]  Kai Ming Ting,et al.  Boosting Trees for Cost-Sensitive Classifications , 1998, ECML.

[35]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[36]  Salvatore J. Stolfo,et al.  AdaCost: Misclassification Cost-Sensitive Boosting , 1999, ICML.

[37]  Qiang Yang,et al.  Decision trees with minimal costs , 2004, ICML.

[38]  Zhi-Hua Zhou,et al.  Ensemble Methods: Foundations and Algorithms , 2012 .

[39]  Björn E. Ottersten,et al.  Example-dependent cost-sensitive decision trees , 2015, Expert Syst. Appl..

[40]  K. Coussement,et al.  Improving customer retention management through cost-sensitive learning , 2014 .

[41]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[42]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[43]  Kai Ming Ting,et al.  Boosting Cost-Sensitive Trees , 1998, Discovery Science.

[44]  Tom Fawcett,et al.  Robust Classification for Imprecise Environments , 2000, Machine Learning.

[45]  Nitesh V. Chawla,et al.  SMOTEBoost: Improving Prediction of the Minority Class in Boosting , 2003, PKDD.

[46]  Bianca Zadrozny,et al.  Transforming classifier scores into accurate multiclass probability estimates , 2002, KDD.

[47]  Bojan Cestnik,et al.  Estimating Probabilities: A Crucial Task in Machine Learning , 1990, ECAI.

[48]  Rich Caruana,et al.  Obtaining Calibrated Probabilities from Boosting , 2005, UAI.

[49]  Charles Elkan,et al.  The Foundations of Cost-Sensitive Learning , 2001, IJCAI.

[50]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[51]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[52]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[53]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[54]  Young Jin Kim,et al.  Cost-sensitive prediction of airline delays using machine learning , 2017, 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC).

[55]  Michael J. Pazzani,et al.  Reducing Misclassification Costs , 1994, ICML.

[56]  Peter A. Flach,et al.  Cost-sensitive boosting algorithms: Do we really need them? , 2016, Machine Learning.

[57]  Kai Ming Ting,et al.  An Instance-weighting Method to Induce Cost-sensitive Trees , 2001 .

[58]  Gustavo E. A. P. A. Batista,et al.  Data mining with imbalanced class distributions: concepts and methods , 2009, IICAI.

[59]  Marie-Anne Guerry,et al.  Predicting employee absenteeism for cost effective interventions , 2021, Decis. Support Syst..