The Phe105 loop of Alix Bro1 domain plays a key role in HIV-1 release.

[1]  Thomas Müller-Reichert,et al.  Cortical Constriction During Abscission Involves Helices of ESCRT-III–Dependent Filaments , 2011, Science.

[2]  W. Weissenhorn,et al.  Essential ingredients for HIV-1 budding. , 2011, Cell host & microbe.

[3]  W. Sundquist,et al.  ESCRT-III protein requirements for HIV-1 budding. , 2011, Cell host & microbe.

[4]  P. Bieniasz,et al.  Dynamics of ESCRT protein recruitment during retroviral assembly , 2011, Nature Cell Biology.

[5]  Natalie Elia,et al.  Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission , 2011, Proceedings of the National Academy of Sciences.

[6]  N. Kato,et al.  The ESCRT System Is Required for Hepatitis C Virus Production , 2011, PloS one.

[7]  R. Prange,et al.  Alix regulates egress of hepatitis B virus naked capsid particles in an ESCRT‐independent manner , 2010, Cellular microbiology.

[8]  K. Nagashima,et al.  Basic Residues in the Nucleocapsid Domain of Gag Are Critical for Late Events of HIV-1 Budding , 2010, Journal of Virology.

[9]  Xiaoping Zhou,et al.  Decoding the intrinsic mechanism that prohibits ALIX interaction with ESCRT and viral proteins. , 2010, The Biochemical journal.

[10]  W. Sundquist,et al.  Identification and Structural Characterization of the ALIX-Binding Late Domains of Simian Immunodeficiency Virus SIVmac239 and SIVagmTan-1 , 2010, Journal of Virology.

[11]  Shui-Tein Chen,et al.  Association of Alix with late endosomal lysobisphosphatidic acid is important for dengue virus infection in human endothelial cells. , 2010, Journal of proteome research.

[12]  J. Hurley,et al.  Membrane budding and scission by the ESCRT machinery: it's all in the neck , 2010, Nature Reviews Molecular Cell Biology.

[13]  V. Dussupt,et al.  The ESCRT-Associated Protein Alix Recruits the Ubiquitin Ligase Nedd4-1 To Facilitate HIV-1 Release through the LYPXnL L Domain Motif , 2010, Journal of Virology.

[14]  Marc C. Johnson,et al.  An LYPSL Late Domain in the Gag Protein Contributes to the Efficient Release and Replication of Rous Sarcoma Virus , 2010, Journal of Virology.

[15]  J. Hurley,et al.  Molecular Mechanism of Multivesicular Body Biogenesis by ESCRT Complexes , 2010, Nature.

[16]  James D. Riches,et al.  Computational Model of Membrane Fission Catalyzed by ESCRT-III , 2009, PLoS Comput. Biol..

[17]  K. Nagashima,et al.  Functional role of Alix in HIV-1 replication. , 2009, Virology.

[18]  P. Bieniasz The cell biology of HIV-1 virion genesis. , 2009, Cell host & microbe.

[19]  D. I. Svergun,et al.  A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. , 2009, Structure.

[20]  Michio Inoue,et al.  Divergent Bro1 Domains Share the Capacity To Bind Human Immunodeficiency Virus Type 1 Nucleocapsid and To Enhance Virus-Like Particle Production , 2009, Journal of Virology.

[21]  Jennifer Lippincott-Schwartz,et al.  Membrane scission by the ESCRT-III complex , 2009, Nature.

[22]  Kunio Nagashima,et al.  The Nucleocapsid Region of HIV-1 Gag Cooperates with the PTAP and LYPXnL Late Domains to Recruit the Cellular Machinery Necessary for Viral Budding , 2009, PLoS pathogens.

[23]  B. Goud,et al.  Structural basis for recruitment of Rab6-interacting protein 1 to Golgi via a RUN domain. , 2009, Structure.

[24]  S. Emr,et al.  Functional Reconstitution of ESCRT-III Assembly and Disassembly , 2009, Cell.

[25]  J. Garin,et al.  Alix and ALG-2 Are Involved in Tumor Necrosis Factor Receptor 1-induced Cell Death* , 2008, Journal of Biological Chemistry.

[26]  Natalie Elia,et al.  Midbody Targeting of the ESCRT Machinery by a Noncanonical Coiled Coil in CEP55 , 2008, Science.

[27]  Jacob Piehler,et al.  Helical Structures of ESCRT-III Are Disassembled by VPS4 , 2008, Science.

[28]  Xiaoping Zhou,et al.  Extracellular Alix regulates integrin‐mediated cell adhesions and extracellular matrix assembly , 2008, The EMBO journal.

[29]  R. D. Fisher,et al.  ALIX-CHMP4 interactions in the human ESCRT pathway , 2008, Proceedings of the National Academy of Sciences.

[30]  Aleksandr Mironov,et al.  The Bro1-related protein HD-PTP/PTPN23 is required for endosomal cargo sorting and multivesicular body morphogenesis , 2008, Proceedings of the National Academy of Sciences.

[31]  M. Maki,et al.  Brox, a novel farnesylated Bro1 domain‐containing protein that associates with charged multivesicular body protein 4 (CHMP4) , 2008, The FEBS journal.

[32]  P. Hanson,et al.  Plasma membrane deformation by circular arrays of ESCRT-III protein filaments , 2008, The Journal of cell biology.

[33]  Michio Inoue,et al.  Human Immunodeficiency Virus Type 1 Gag Engages the Bro1 Domain of ALIX/AIP1 through the Nucleocapsid , 2007, Journal of Virology.

[34]  W. Sundquist,et al.  ESCRT-III recognition by VPS4 ATPases , 2007, Nature.

[35]  S. Gygi,et al.  Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis , 2007, The EMBO journal.

[36]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[37]  J. Martin-Serrano,et al.  Parallels Between Cytokinesis and Retroviral Budding: A Role for the ESCRT Machinery , 2007, Science.

[38]  Tokiko Watanabe,et al.  Involvement of host cellular multivesicular body functions in hepatitis B virus budding , 2007, Proceedings of the National Academy of Sciences.

[39]  B. André,et al.  Split-Ubiquitin Two-Hybrid Assay To Analyze Protein-Protein Interactions at the Endosome: Application to Saccharomyces cerevisiae Bro1 Interacting with ESCRT Complexes, the Doa4 Ubiquitin Hydrolase, and the Rsp5 Ubiquitin Ligase , 2007, Eukaryotic Cell.

[40]  H. Göttlinger,et al.  Potent Rescue of Human Immunodeficiency Virus Type 1 Late Domain Mutants by ALIX/AIP1 Depends on Its CHMP4 Binding Site , 2007, Journal of Virology.

[41]  R. D. Fisher,et al.  Structural and Biochemical Studies of ALIX/AIP1 and Its Role in Retrovirus Budding , 2007, Cell.

[42]  S. Kajigaya,et al.  HD-PTP and Alix share some membrane-traffic related proteins that interact with their Bro1 domains or proline-rich regions. , 2007, Archives of biochemistry and biophysics.

[43]  Xiaoping Zhou,et al.  Involvement of the Conserved Adaptor Protein Alix in Actin Cytoskeleton Assembly* , 2006, Journal of Biological Chemistry.

[44]  G. Odorizzi The multiple personalities of Alix , 2006, Journal of Cell Science.

[45]  T. Aigaki,et al.  POSH, a scaffold protein for JNK signaling, binds to ALG‐2 and ALIX in Drosophila , 2006, FEBS letters.

[46]  R. Sadoul Do Alix and ALG‐2 really control endosomes for better or for worse? , 2006, Biology of the cell.

[47]  O. Weisz,et al.  Functions of Early (AP-2) and Late (AIP1/ALIX) Endocytic Proteins in Equine Infectious Anemia Virus Budding* , 2005, Journal of Biological Chemistry.

[48]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[49]  F. Barr,et al.  A GTPase-activating protein controls Rab5 function in endocytic trafficking , 2005, Nature Cell Biology.

[50]  A. Brech,et al.  Alix regulates cortical actin and the spatial distribution of endosomes , 2005, Journal of Cell Science.

[51]  J. Hurley,et al.  Structural basis for endosomal targeting by the Bro1 domain. , 2005, Developmental cell.

[52]  M. Maki,et al.  Identification of Rab GTPase-Activating Protein-Like Protein (RabGAPLP) as a Novel Alix/AIP1-Interacting Protein , 2005, Bioscience, biotechnology, and biochemistry.

[53]  Natalie Luhtala,et al.  Bro1 coordinates deubiquitination in the multivesicular body pathway by recruiting Doa4 to endosomes , 2004, The Journal of cell biology.

[54]  Stefan Matile,et al.  Role of LBPA and Alix in Multivesicular Liposome Formation and Endosome Organization , 2004, Science.

[55]  M. Maki,et al.  The ALG-2-interacting Protein Alix Associates with CHMP4b, a Human Homologue of Yeast Snf7 That Is Involved in Multivesicular Body Sorting* , 2003, Journal of Biological Chemistry.

[56]  D. Pérez-Caballero,et al.  Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Calistri,et al.  AIP1/ALIX Is a Binding Partner for HIV-1 p6 and EIAV p9 Functioning in Virus Budding , 2003, Cell.

[58]  W. Sundquist,et al.  The Protein Network of HIV Budding , 2003, Cell.

[59]  Mirko H. H. Schmidt,et al.  SETA/CIN85/Ruk and its binding partner AIP1 associate with diverse cytoskeletal elements, including FAKs, and modulate cell adhesion , 2003, Journal of Cell Science.

[60]  S. Emr,et al.  Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae , 2003, Journal of Cell Science.

[61]  P. Bieniasz,et al.  Role of ESCRT-I in Retroviral Budding , 2003, Journal of Virology.

[62]  P. Burbelo,et al.  The RhoA-binding protein, Rhophilin-2, Regulates Actin Cytoskeleton Organization* , 2002, The Journal of Biological Chemistry.

[63]  Sue-Hwa Lin,et al.  Hp95 promotes anoikis and inhibits tumorigenicity of HeLa cells , 2002, Oncogene.

[64]  B. Blot,et al.  Alix (ALG-2-interacting Protein X), a Protein Involved in Apoptosis, Binds to Endophilins and Induces Cytoplasmic Vacuolization* , 2002, The Journal of Biological Chemistry.

[65]  Markus Babst,et al.  Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. , 2002, Developmental cell.

[66]  P. Bieniasz,et al.  HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress , 2001, Nature Medicine.

[67]  Wesley I. Sundquist,et al.  Tsg101 and the Vacuolar Protein Sorting Pathway Are Essential for HIV-1 Budding , 2001, Cell.

[68]  L. Verplank,et al.  Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[69]  B. Goud,et al.  RUN domains: a new family of domains involved in Ras-like GTPase signaling. , 2001, Trends in biochemical sciences.

[70]  S. Toyooka,et al.  HD-PTP: A novel protein tyrosine phosphatase gene on human chromosome 3p21.3. , 2000, Biochemical and biophysical research communications.

[71]  A. Nichols,et al.  Alix, a novel mouse protein undergoing calcium-dependent interaction with the apoptosis-linked-gene 2 (ALG-2) protein , 1999, Cell Death and Differentiation.

[72]  L. Pellegrini,et al.  Cloning of AIP1, a Novel Protein That Associates with the Apoptosis-linked Gene ALG-2 in a Ca2+-dependent Reaction* , 1999, The Journal of Biological Chemistry.

[73]  E. Freed,et al.  p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease , 1995, Journal of virology.

[74]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[75]  H. Gendelman,et al.  Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone , 1986, Journal of virology.

[76]  Lindsay N. Carpp,et al.  Interaction between the yellow fever virus nonstructural protein NS3 and the host protein Alix contributes to the release of infectious particles. , 2011, Microbes and infection.

[77]  K. Nagashima,et al.  Structural basis for viral late-domain binding to Alix , 2007, Nature Structural &Molecular Biology.

[78]  M. Maki,et al.  CHMP4b is a major binding partner of the ALG-2-interacting protein Alix among the three CHMP4 isoforms. , 2004, Archives of biochemistry and biophysics.

[79]  E. Freed,et al.  Retrovirus budding. , 2004, Virus research.

[80]  Jens Meiler,et al.  Rosetta predictions in CASP5: Successes, failures, and prospects for complete automation , 2003, Proteins.

[81]  Peter Briggs,et al.  A graphical user interface to the CCP4 program suite. , 2003, Acta crystallographica. Section D, Biological crystallography.

[82]  P. Afonine,et al.  research papers Acta Crystallographica Section D Biological , 2003 .

[83]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[84]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[85]  Vincent B. Chen,et al.  PHENIX: a comprehensive Python-based system for macromolecular structure solution , 2010, Acta crystallographica. Section D, Biological crystallography.