Impact of Annealing on Electrocaloric Response in Lanthanum-Modified Lead Zirconate Titanate Ceramic

[1]  R. Pirc,et al.  Electrocaloric response in lanthanum-modified lead zirconate titanate ceramics , 2020, 2006.05079.

[2]  T. Yang,et al.  Enhanced electrocaloric effect in La-based PZT antiferroelectric ceramics , 2018 .

[3]  Yingbang Yao,et al.  Large Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics , 2017, Scientific Reports.

[4]  H. Khemakhem,et al.  Indirect and direct electrocaloric measurements of (Ba1−xCax)(Zr0.1Ti0.9)O3 ceramics (x = 0.05, x = 0.20) , 2016 .

[5]  H. Uršič,et al.  Large electrocaloric effect in grain-size-engineered 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 , 2016 .

[6]  R. Pirc,et al.  Anomalous dielectric and thermal properties of Ba-doped PbZrO3 ceramics , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  M. Amjoud,et al.  Electrocaloric effect in Ba0.2Ca0.8Ti0.95Ge0.05O3 determined by a new pyroelectric method , 2015, 1507.07700.

[8]  Yang Liu,et al.  Giant Negative Electrocaloric Effect in Antiferroelectric La‐Doped Pb(ZrTi)O3 Thin Films Near Room Temperature , 2015, Advanced materials.

[9]  Xavier Moya,et al.  Too cool to work , 2015, Nature Physics.

[10]  A. Poredos,et al.  Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device , 2015 .

[11]  M. Amjoud,et al.  Lead-free Ba0.8Ca0.2(ZrxTi1−x)O3 ceramics with large electrocaloric effect , 2015 .

[12]  R. Pirc,et al.  Negative electrocaloric effect in antiferroelectric PbZrO3 , 2014 .

[13]  X. Moya,et al.  Caloric materials near ferroic phase transitions. , 2014, Nature materials.

[14]  N. Mathur Future Trends in Electrocalorics Materials , 2014 .

[15]  R. Pirc,et al.  High-resolution electrocaloric and heat capacity measurements in barium titanate , 2013 .

[16]  L. Qiao,et al.  Optimized electrocaloric refrigeration capacity in lead-free (1−x)BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3 ceramics , 2013 .

[17]  Qi Zhang,et al.  A Giant Electrocaloric Effect in Nanoscale Antiferroelectric and Ferroelectric Phases Coexisting in a Relaxor Pb0.8Ba0.2ZrO3 Thin Film at Room Temperature , 2013 .

[18]  R. Pirc,et al.  Diffuse critical point in PLZT ceramics , 2013 .

[19]  Matjaz Valant,et al.  Electrocaloric materials for future solid-state refrigeration technologies , 2012 .

[20]  I. Ponomareva,et al.  Bridging the macroscopic and atomistic descriptions of the electrocaloric effect. , 2012, Physical review letters.

[21]  S. Shi,et al.  Abnormal electrocaloric effect of Na0.5Bi0.5TiO3–BaTiO3 lead-free ferroelectric ceramics above room temperature , 2011 .

[22]  M. Kosec,et al.  Influence of the critical point on the electrocaloric response of relaxor ferroelectrics , 2011 .

[23]  Qiming Zhang,et al.  Upper bounds on the electrocaloric effect in polar solids , 2011 .

[24]  J. Banys,et al.  Features of Thermal Properties of Ferroelectric PLZT Ceramics in the Region of Phase Transition , 2011 .

[25]  R. Pirc,et al.  Electrocaloric effect in relaxor ferroelectrics , 2010, 1010.2914.

[26]  H. Jantunen,et al.  Electric-field-induced dielectric and temperature changes in a⟨011⟩-orientedPb(Mg1/3Nb2/3)O3-PbTiO3single crystal , 2010 .

[27]  M. Kosec,et al.  Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect , 2010 .

[28]  S. Shi,et al.  Direct measurement of giant electrocaloric effect in BaTiO3 multilayer thick film structure beyond theoretical prediction , 2010, 1003.5032.

[29]  Qiming Zhang,et al.  Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature , 2008, Science.

[30]  S. Alpay,et al.  Influence of mechanical boundary conditions on the electrocaloric properties of ferroelectric thin films , 2008 .

[31]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[32]  S. Pruvost,et al.  Electrocaloric properties of high dielectric constant ferroelectric ceramics , 2007 .

[33]  D. Guyomar,et al.  Ferroelectric electrocaloric conversion in 0.75(PbMg1/3Nb2/3O3)–0.25(PbTiO3) ceramics , 2006 .

[34]  J. Petzelt,et al.  The giant electromechanical response in ferroelectric relaxors as a critical phenomenon , 2006, Nature.

[35]  N. Mathur,et al.  Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9 PbMg(1/3)Nb(2/3)O(3)-0.1 PbTiO(3) near room temperature , 2006, cond-mat/0604268.

[36]  N. Mathur,et al.  Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3 , 2005, Science.

[37]  D. Viehland,et al.  Role of potassium comodification on domain evolution and electrically induced strains in La modified lead zirconate titanate ferroelectric ceramics , 2000 .

[38]  V. Bobnar,et al.  Aging of the linear and nonlinear dielectric susceptibility in a PLZT relaxor system , 2000 .

[39]  R. Pirc,et al.  Electric-field–temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate , 1999 .

[40]  A. Simon,et al.  A Raman and dielectric study of ferroelectric ceramics , 1999 .

[41]  R. Pirc,et al.  Slow dynamics and ergodicity breaking in a lanthanum-modified lead zirconate titanate relaxor system , 1999 .

[42]  D. Viehland,et al.  Ferroelectric and glassy states in La-modified lead zirconate titanate ceramics: A general picture , 1998 .

[43]  Zhengkui Xu,et al.  Normal to relaxor ferroelectric transformations in lanthanum‐modified tetragonal‐structured lead zirconate titanate ceramics , 1996 .

[44]  Zhengkui Xu,et al.  INCOMMENSURATION IN LA-MODIFIED ANTIFERROELECTRIC LEAD ZIRCONATE TITANATE CERAMICS , 1994 .

[45]  Zhengkui Xu,et al.  The spontaneous relaxor to normal ferroelectric transformation in La-modified lead zirconate titanate , 1994 .