Vorticity structure and evolution in a transverse jet

Transverse jets arise in many applications, including propulsion, effluent dispersion, oil field flows, and V/STOL aerodynamics. This study seeks a fundamental, mechanistic understanding of the structure and evolution of vorticity in the transverse jet. We develop a high-resolution three-dimensional vortex simulation of the transverse jet at large Reynolds number and consider jet-to-crossflow velocity ratios r ranging from 5 to 10. A new formulation of vorticity-flux boundary conditions accounts for the interaction of channel wall vorticity with the jet flow immediately around the orifice. We demonstrate that the nascent jet shear layer contains not only azimuthal vorticity generated in the jet pipe, but wall-normal and azimuthal perturbations resulting from the jet–crossflow interaction. This formulation also yields analytical expressions for vortex lines in the near field as a function of r. Transformation of the cylindrical shear layer emanating from the orifice begins with axial elongation of its lee side to form sections of counter-rotating vorticity aligned with the jet trajectory. Periodic roll-up of the shear layer accompanies this deformation, creating complementary vortex arcs on the lee and windward sides of the jet. Counter-rotating vorticity then drives lee-side roll-ups in the windward direction, along the normal to the jet trajectory. Azimuthal vortex arcs of alternating sign thus approach each other on the windward boundary of the jet. Accordingly, initially planar material rings on the shear layer fold completely and assume an interlocking structure that persists for several diameters above the jet exit. Though the near field of the jet is dominated by deformation and periodic roll-up of the shear layer, the resulting counter-rotating vorticity is a pronounced feature of the mean field; in turn, the mean counter-rotation exerts a substantial influence on the deformation of the shear layer. Following the pronounced bending of the trajectory into the crossflow, we observe a sudden breakdown of near-field vortical structures into a dense distribution of smaller scales. Spatial filtering of this region reveals the persistence of counter-rotating streamwise vorticity initiated in the near field.

[1]  J. Keffer,et al.  On the structures in the near-wake region of an elevated turbulent jet in a crossflow , 1997, Journal of Fluid Mechanics.

[2]  W. S. Lewellen,et al.  On the vorticity dynamics of a turbulent jet in a crossflow , 1986, Journal of Fluid Mechanics.

[3]  Ananth Grama,et al.  Improving error bounds for multipole-based treecodes , 1998, Proceedings. Fifth International Conference on High Performance Computing (Cat. No. 98EX238).

[4]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[5]  J. Hunt,et al.  The dynamics of the near field of strong jets in crossflows , 1989, Journal of Fluid Mechanics.

[6]  V. Rokhlin,et al.  Rapid Evaluation of Potential Fields in Three Dimensions , 1988 .

[7]  P. Degond,et al.  The weighted particle method for convection-diffusion equations , 1989 .

[8]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[9]  M. Dhanak,et al.  The bifurcation of circular jets in crossflow , 1996 .

[10]  John Christos Vassilicos,et al.  Turbulence structure and vortex dynamics , 2000 .

[11]  Richard J. Margason,et al.  Fifty Years of Jet in Cross Flow Research , 1993 .

[12]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[13]  M. Mungal,et al.  Mixing, structure and scaling of the jet in crossflow , 1998, Journal of Fluid Mechanics.

[14]  Short Wave Instability on Vortex Filaments , 1998 .

[15]  Yasuhiro Kamotani,et al.  Experiments on a Turbulent Jet in a Cross Flow , 1972 .

[16]  Lagrangian Simulation of a Jet in Crossflow at a Finite Reynolds Number , 2005 .

[17]  Luca Cortelezzi,et al.  The actively controlled jet in crossflow , 2001, Journal of Fluid Mechanics.

[18]  A. Vakili,et al.  Dynamics of vortex rings in crossflow , 1995 .

[19]  Christopher R. Anderson,et al.  An Implementation of the Fast Multipole Method without Multipoles , 1992, SIAM J. Sci. Comput..

[20]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[21]  J. Hermanson,et al.  Penetration and Mixing of Fully Modulated Turbulent Jets in Crossflow , 1999 .

[22]  Ahmed F. Ghoniem,et al.  K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-body simulations , 2005 .

[23]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[24]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[25]  A. Krothapalli,et al.  ON THE SEPARATED FLOW UPSTREAM OF A JET IN A CROSS FLOW , 1989 .

[26]  Brian J. Cantwell,et al.  Organized Motion in Turbulent Flow , 1981 .

[27]  Vipin Kumar,et al.  Scalable parallel formulations of the barnes-hut method for n-body simulations , 1994, Supercomputing '94.

[28]  Robert Krasny,et al.  An Ewald summation based multipole method , 2000 .

[29]  A. Roshko,et al.  Vortical structure in the wake of a transverse jet , 1994, Journal of Fluid Mechanics.

[30]  Anjaneyulu Krothapalli,et al.  Separated flow upstream of a jet in a crossflow , 1990 .

[31]  G. Haller Finding finite-time invariant manifolds in two-dimensional velocity fields. , 2000, Chaos.

[32]  M. Kurosaka,et al.  Kidney and anti-kidney vortices in crossflow jets , 1997, Journal of Fluid Mechanics.

[33]  Tim Colonius,et al.  A Vortex Particle Method for Two-Dimensional Compressible Flow , 2002 .

[34]  Zhong-Hui Duan,et al.  An adaptive treecode for computing nonbonded potential energy in classical molecular systems , 2001, J. Comput. Chem..

[35]  Inderjit S. Dhillon,et al.  A Data-Clustering Algorithm on Distributed Memory Multiprocessors , 1999, Large-Scale Parallel Data Mining.

[36]  Lester L. Yuan,et al.  Trajectory and entrainment of a round jet in crossflow , 1998 .

[37]  Alexandre J. Chorin Regular ArticleHairpin Removal in Vortex Interactions II , 1993 .

[38]  A. Hussain,et al.  Coherent structures and turbulence , 1986, Journal of Fluid Mechanics.

[39]  G. Haller,et al.  Lagrangian coherent structures and mixing in two-dimensional turbulence , 2000 .

[40]  George Keith Batchelor,et al.  An Introduction to Fluid Dynamics. , 1969 .

[41]  Michael S. Warren,et al.  A portable parallel particle program , 1995 .

[42]  Ahmed F. Ghoniem,et al.  Grid-free simulation of diffusion using random walk methods , 1985 .

[43]  L. Rosenhead The Formation of Vortices from a Surface of Discontinuity , 1931 .

[44]  Alexandre J. Chorin,et al.  Vorticity and turbulence , 1994 .

[45]  Alexander J. Smits,et al.  Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet , 1995 .

[46]  Grégoire Winckelmans,et al.  Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows , 1993 .

[47]  Adnan Eroglu,et al.  Structure, penetration, and mixing of pulsed jets in crossflow , 2001 .

[48]  J. Broadwell,et al.  Structure and mixing of a transverse jet in incompressible flow , 1984, Journal of Fluid Mechanics.

[49]  Andrew J. Majda,et al.  High order accurate vortex methods with explicit velocity kernels , 1985 .

[50]  Ahmed F. Ghoniem,et al.  Mechanism of streamwise vorticity formation in a transverse jet , 2002 .

[51]  Jorg Schluter,et al.  LES of jets in cross flow and its application to a gas turbine burner , 2000 .

[52]  Michael S. Warren,et al.  Vortex Methods for Direct Numerical Simulation of Three-Dimensional Bluff Body Flows , 2002 .

[53]  B. D. Pratte,et al.  Profiles of the Round Turbulent Jet in A Cross Flow , 1967 .

[54]  Ann Karagozian An analytical model for the vorticity associated with a transverse jet , 1986 .

[55]  Omar M. Knio,et al.  Numerical study of a three-dimensional vortex method , 1990 .

[56]  John Dubinski A parallel tree code , 1996 .

[57]  Michael S. Warren,et al.  Fast Parallel Tree Codes for Gravitational and Fluid Dynamical N-Body Problems , 1994, Int. J. High Perform. Comput. Appl..

[58]  Jeffrey M. Cohen,et al.  Dynamics and Control of an Isolated Jet in Crossflow , 2003 .

[59]  Yoshua Bengio,et al.  Convergence Properties of the K-Means Algorithms , 1994, NIPS.

[60]  Georges-Henri Cottet,et al.  A new approach for the analysis of Vortex Methods in two and three dimensions , 1988 .

[61]  Ole H. Hald,et al.  Convergence of Vortex methods for Euler's equations, III , 1987 .

[62]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[63]  P. Degond,et al.  The weighted particle method for convection-diffusion equations. II. The anisotropic case , 1989 .

[64]  L Greengard,et al.  Fast Algorithms for Classical Physics , 1994, Science.

[65]  Eckart Meiburg,et al.  Three-dimensional shear layers via vortex dynamics , 1988, Journal of Fluid Mechanics.

[66]  Michael S. Warren,et al.  Skeletons from the treecode closet , 1994 .

[67]  Y. Marzouk,et al.  Vorticity generation mechanisms and correct boundary conditions for transverse jet simulation , 2003 .

[68]  A. Chorin Microstructure, renormalization, and more efficient vortex methods , 1996 .

[69]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[70]  Pangfeng Liu,et al.  Tree codes for vortex dynamics: Application of a programming framework , 1995 .

[71]  Ernest F. Hasselbrink,et al.  Transverse jets and jet flames. Part 2. Velocity and OH field imaging , 2001, Journal of Fluid Mechanics.

[72]  A. Perry,et al.  An experimental study of round jets in cross-flow , 1996, Journal of Fluid Mechanics.

[73]  Ernest F. Hasselbrink,et al.  Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets , 2001, Journal of Fluid Mechanics.

[74]  W. Rodi,et al.  Experimental investigation of jets in a crossflow , 1982, Journal of Fluid Mechanics.

[75]  K. Lindsay,et al.  A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow , 2001 .

[76]  Hald,et al.  Vortex renormalization in three space dimensions. , 1995, Physical review. B, Condensed matter.

[77]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[78]  Sylvie Mas-Gallic THE DIFFUSION VELOCITY METHOD: A DETERMINISTIC WAY OF MOVING THE NODES FOR SOLVING DIFFUSION EQUATIONS , 2002 .

[79]  Luca Cortelezzi,et al.  On the formation of the counter-rotating vortex pair in transverse jets , 1998, Journal of Fluid Mechanics.

[80]  Ole Hald,et al.  Convergence of vortex methods for Euler’s equations , 1978 .

[81]  R. P. Weston,et al.  Vorticity Associated with a Jet in a Cross Flow , 1974 .

[82]  Andrew W. Appel,et al.  An Efficient Program for Many-Body Simulation , 1983 .

[83]  Francesc Giralt,et al.  Organized motions in a jet in crossflow , 2001, Journal of Fluid Mechanics.

[84]  Ahmed F. Ghoniem,et al.  Modified interpolation kernels for treating diffusion and remeshing in vortex methods , 2006, J. Comput. Phys..

[85]  W. Baines,et al.  The round turbulent jet in a cross-wind , 1963, Journal of Fluid Mechanics.

[86]  Suman Muppidi,et al.  Study of trajectories of jets in crossflow using direct numerical simulations , 2005, Journal of Fluid Mechanics.

[87]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[88]  Andrew J. Majda,et al.  Vortex methods. I. Convergence in three dimensions , 1982 .

[89]  Ahmed F. Ghoniem,et al.  Vorticity formulation for an actuated jet in crossflow , 2004 .

[90]  Christopher R. Anderson,et al.  On Vortex Methods , 1985 .

[91]  Y. Kamotani,et al.  Experiments on confined turbulent jets in cross flow. [longitudinal and transverse distributions of velocity and temperature for jet flow] , 1973 .

[92]  Ahmed F. Ghoniem,et al.  Axisymmetric vortex method for low-mach number, diffusion-controlled combustion , 2003 .

[93]  S. Shankar,et al.  A New Diffusion Procedure for Vortex Methods , 1996 .

[94]  Joshua E. Barnes,et al.  A modified tree code: don't laugh; it runs , 1990 .

[95]  A. Leonard Computing Three-Dimensional Incompressible Flows with Vortex Elements , 1985 .

[96]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[97]  Lester L. Yuan,et al.  Large-eddy simulations of a round jet in crossflow , 1999, Journal of Fluid Mechanics.

[98]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[99]  G. Haller Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .

[100]  A. Chorin Numerical study of slightly viscous flow , 1973, Journal of Fluid Mechanics.

[101]  A. Karagozian,et al.  Control of Vorticity Generation in an Acoustically Excited Jet in Crossflow , 2005 .

[102]  Tee Tai Lim,et al.  On the development of large-scale structures of a jet normal to a cross flow , 2001 .

[103]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[104]  Alexandre J. Chorin,et al.  Hairpin Removal in Vortex Interactions II , 1990 .

[105]  J. K. Foss,et al.  The effect of vortex generators on a jet in a cross‐flow , 1997 .

[106]  Marcia O. Fenley,et al.  A Fast Adaptive Multipole Algorithm for Calculating Screened Coulomb (Yukawa) Interactions , 1999 .