A Review of High Impact Weather for Aviation Meteorology

This review paper summarizes current knowledge available for aviation operations related to meteorology and provides suggestions for necessary improvements in the measurement and prediction of weather-related parameters, new physical methods for numerical weather predictions (NWP), and next-generation integrated systems. Severe weather can disrupt aviation operations on the ground or in-flight. The most important parameters related to aviation meteorology are wind and turbulence, fog visibility, aerosol/ash loading, ceiling, rain and snow amount and rates, icing, ice microphysical parameters, convection and precipitation intensity, microbursts, hail, and lightning. Measurements of these parameters are functions of sensor response times and measurement thresholds in extreme weather conditions. In addition to these, airport environments can also play an important role leading to intensification of extreme weather conditions or high impact weather events, e.g., anthropogenic ice fog. To observe meteorological parameters, new remote sensing platforms, namely wind LIDAR, sodars, radars, and geostationary satellites, and in situ instruments at the surface and in the atmosphere, as well as aircraft and Unmanned Aerial Vehicles mounted sensors, are becoming more common. At smaller time and space scales (e.g., < 1 km), meteorological forecasts from NWP models need to be continuously improved for accurate physical parameterizations. Aviation weather forecasts also need to be developed to provide detailed information that represents both deterministic and statistical approaches. In this review, we present available resources and issues for aviation meteorology and evaluate them for required improvements related to measurements, nowcasting, forecasting, and climate change, and emphasize future challenges.

[1]  Z. Pu,et al.  Characteristics and variations of low-level jets in the contrasting warm season precipitation extremes of 2006 and 2007 over the Southern Great Plains , 2019, Theoretical and Applied Climatology.

[2]  J. Knox,et al.  Application of the Lighthill–Ford Theory of Spontaneous Imbalance to Clear-Air Turbulence Forecasting , 2008 .

[3]  Robert Sharman,et al.  Research Collaborations for Better Predictions of Aviation Weather Hazards , 2017 .

[4]  Larry B. Cornman,et al.  Description and Derived Climatologies of Automated In Situ Eddy-Dissipation-Rate Reports of Atmospheric Turbulence , 2014 .

[5]  Jonathan P. D. Mittaz,et al.  A Physical Method for the Calibration of the AVHRR/3 Thermal IR Channels. Part II: An In-Orbit Comparison of the AVHRR Longwave Thermal IR Channels on boardMetOp-Awith IASI , 2011 .

[6]  Thomas Carty,et al.  Integrated icing diagnostic algorithm assessment at regional airlines , 2000, 19th DASC. 19th Digital Avionics Systems Conference. Proceedings (Cat. No.00CH37126).

[7]  Kwo-Sen Kuo,et al.  Clustering, randomness, and regularity in cloud fields: 5. The nature of regular cumulus cloud fields , 1998 .

[8]  Michael J. Pavolonis,et al.  Automated Detection of Explosive Volcanic Eruptions Using Satellite‐Derived Cloud Vertical Growth Rates , 2018, Earth and Space Science.

[9]  M. Xue,et al.  A Comparison of Precipitation Forecast Skill between Small Convection-Allowing and Large Convection-Parameterizing Ensembles , 2009 .

[10]  L. Thobois,et al.  Review of Lidar-Based Applications for Aviation Weather , 2019, Pure and Applied Geophysics.

[11]  Pak Wai Chan,et al.  Depiction of complex airflow near Hong Kong International Airport using a Doppler LIDAR with a two-dimensional wind retrieval technique , 2007 .

[12]  Alan J. Wallcraft,et al.  A Correction for Land Contamination of Atmospheric Variables near Land–Sea Boundaries* , 2007 .

[13]  U. Schumann,et al.  On the Life Cycle of Individual Contrails and Contrail Cirrus , 2017 .

[14]  Geoff DiMego,et al.  An introduction to NCEP SREF aviation project , 2004 .

[15]  David Serke,et al.  The use of x-band radar to support the detection of in-flight icing hazards by the NASA Icing Remote Sensing System , 2008, Optical Engineering + Applications.

[16]  J. G. Wieler,et al.  Terminal Doppler weather radar , 1990 .

[17]  Joachim Peinke,et al.  How to improve the estimation of power curves for wind turbines , 2008 .

[18]  W. Paul Menzel,et al.  Cloud-drift and water vapor winds in the polar regions from MODISIR , 2003, IEEE Trans. Geosci. Remote. Sens..

[19]  George A. Isaac,et al.  Adaptive Blending of Model and Observations for Automated Short-Range Forecasting: Examples from the Vancouver 2010 Olympic and Paralympic Winter Games , 2012, Pure and Applied Geophysics.

[20]  Stevie Roquelaure,et al.  Contributions from a Local Ensemble Prediction System (LEPS) for Improving Fog and Low Cloud Forecasts at Airports , 2009 .

[21]  Ed R. Westwater,et al.  The accuracy of water vapor and cloud liquid determination by dual‐frequency ground‐based microwave radiometry , 1978 .

[22]  Marcia K. Politovich,et al.  Response of a Research Aircraft to Icing and Evaluation of Severity Indices , 1996 .

[23]  Hirofumi Tomita,et al.  New Microphysical Schemes with Five and Six Categories by Diagnostic Generation of Cloud Ice , 2008 .

[24]  B. Mayer,et al.  Contrails: Visible Aviation Induced Climate Impact , 2012 .

[25]  George C. Craig,et al.  Blending a probabilistic nowcasting method with a high‐resolution numerical weather prediction ensemble for convective precipitation forecasts , 2012 .

[26]  Alfred J Prata,et al.  Observations of volcanic ash clouds in the 10-12 μm window using AVHRR/2 data , 1989 .

[27]  Barry E. Schwartz,et al.  Relative Short-Range Forecast Impact from Aircraft, Profiler, Radiosonde, VAD, GPS-PW, METAR, and Mesonet Observations via the RUC Hourly Assimilation Cycle , 2010 .

[28]  Z. Sokol,et al.  Nowcasting of precipitation by an NWP model using assimilation of extrapolated radar reflectivity , 2012 .

[29]  D. Megenhardt,et al.  Evaluation of the National Convective Weather Forecast Product , 2000 .

[30]  Tetsuya Theodore. Fujita,et al.  The Joint Airport Weather Studies (JAWS) project , 1983 .

[31]  Mark E. Weber,et al.  Low altitude wind shear detection using airport surveillance radars , 1995 .

[32]  D. E. Harrison,et al.  Characterizing Warm-ENSO Variability in the Equatorial Pacific: An OLR Perspective*,+ , 2010 .

[33]  W. Lewis A Flight Investigation of the Meteorological Conditions Conducive to the Formation of Ice on Airplanes , 1947 .

[34]  V. Ødegaard Ice Phase Parameterization in a Numerical Weather Prediction Model , 1997 .

[35]  Robert Sharman,et al.  Prediction of Energy Dissipation Rates for Aviation Turbulence. Part II: Nowcasting Convective and Nonconvective Turbulence , 2017 .

[36]  G. Craig,et al.  Upscale Error Growth in a High-Resolution Simulation of a Summertime Weather Event over Europe* , 2015 .

[37]  Manoj Joshi,et al.  Global Response of Clear‐Air Turbulence to Climate Change , 2017 .

[38]  Thomas T. Warner,et al.  Numerical Weather and Climate Prediction , 2011 .

[39]  Jeffrey B. Knorr,et al.  A Mobile, Phased-Array Doppler Radar For The Study of Severe Convective Storms , 2010 .

[40]  Sunny Sun-Mack,et al.  CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data—Part I: Algorithms , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Harold E. Brooks,et al.  Evaluation of Multiple Planetary Boundary Layer Parameterization Schemes in Southeast U.S. Cold Season Severe Thunderstorm Environments , 2017 .

[42]  William L. Smith,et al.  A Prototype Method for Diagnosing High Ice Water Content Probability Using Satellite Imager Data. , 2017, Atmospheric measurement techniques.

[43]  Rita D. Roberts,et al.  Summary of Convective Storm Initiation and Evolution during IHOP: Observational and Modeling Perspective , 2004 .

[44]  Zhiqing Zhang,et al.  Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4 , 2017 .

[45]  S. Haan,et al.  Retrieving atmospheric turbulence information from regular commercial aircraft using Mode-S and ADS-B , 2016 .

[46]  Dana M. Tobin,et al.  Polarimetric Radar Observations of Precipitation Type and Rate from the 2–3 March 2014 Winter Storm in Oklahoma and Arkansas , 2016 .

[47]  Sunny Sun-Mack,et al.  Detection of single and multilayer clouds in an artificial neural network approach , 2017, Remote Sensing.

[48]  William R. Ryerson,et al.  The Potential for Mesoscale Visibility Predictions with a Multimodel Ensemble , 2014 .

[49]  Z. Pu,et al.  The Climatology, Frequency, and Distribution of Cold Season Fog Events in Northern Utah , 2015, Pure and Applied Geophysics.

[50]  J. Done,et al.  The next generation of NWP: explicit forecasts of convection using the weather research and forecasting (WRF) model , 2004 .

[51]  Judy E. Ghirardelli,et al.  The Meteorological Development Laboratory’s Aviation Weather Prediction System , 2010 .

[52]  Kristopher M. Bedka,et al.  A Probabilistic Multispectral Pattern Recognition Method for Detection of Overshooting Cloud Tops Using Passive Satellite Imager Observations , 2016 .

[53]  V. Masson,et al.  High-Resolution Simulation of Surface and Turbulent Fluxes during HAPEX-MOBILHY , 1998 .

[54]  Roger M. Wakimoto,et al.  The Discovery of the Downburst: T. T. Fujita's Contribution , 2001 .

[55]  Steven J. Nieman,et al.  Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations , 1997 .

[56]  W. Hocking,et al.  Comparisons between multiple in-situ aircraft turbulence measurements and radar in the troposphere , 2014 .

[57]  Riko Oki,et al.  The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation , 2015 .

[58]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[59]  A. Ansmann,et al.  Evolution of the Pinatubo Aerosol: Raman Lidar Observations of Particle Optical Depth, Effective Radius, Mass, and Surface Area over Central Europe at 53.4°N , 1997 .

[60]  David A. Randall,et al.  High-Resolution Simulation of Shallow-to-Deep Convection Transition over Land , 2006 .

[61]  C. K. M. Douglas,et al.  LOCAL WEATHER FORECASTING , 1957 .

[62]  F. Solheim,et al.  Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid water profiles by a frequency synthesized microwave radiometer;Passive bodengebundene atmosphärische Fernerkundung von Temperatur-, Wasserdampf- und Wolkenwasserprofilen mit eine frequenzsynthetisierten Mik , 1998 .

[63]  Paul M. Tag,et al.  An AVHRR Multiple Cloud-Type Classification Package , 2000 .

[64]  J. Walter Strapp,et al.  An Investigation into Location and Convective Lifecycle Trends in an Ice Crystal Icing Engine Event Database , 2015 .

[65]  A. Molthan,et al.  A Methodology to Determine Recipe Adjustments for Multispectral Composites Derived from Next-Generation Advanced Satellite Imagers , 2018 .

[66]  Hui-Ya Chuang,et al.  R2O Transition of NCAR’s Icing and Turbulence Algorithms into NCEP’s Operations , 2018, Pure and Applied Geophysics.

[67]  A. Protat,et al.  Optimizing the Probability of Flying in High Ice Water Content Conditions in the Tropics Using a Regional-Scale Climatology of Convective Cell Properties , 2014 .

[68]  Anthony D. Del Genio,et al.  Will moist convection be stronger in a warmer climate? , 2007 .

[69]  Aijun Xiu,et al.  Development and Testing of a Surface Flux and Planetary Boundary Layer Model for Application in Mesoscale Models , 1995 .

[70]  Joshua Fromm,et al.  The Pilatus unmanned aircraft system for lower atmospheric research , 2015 .

[71]  B. Vonnegut,et al.  Aircraft-produced Ice Particles (APIPs) in Supercooled Clouds and the Probable Mechanism for their Production , 1991 .

[72]  A. J. M. Jacobs,et al.  Numerical Guidance Methods for Decision Support in Aviation Meteorological Forecasting , 2005 .

[73]  Robert Sharman,et al.  Prediction of Energy Dissipation Rates for Aviation Turbulence. Part I: Forecasting Nonconvective Turbulence , 2017 .

[74]  James W. Bilbro,et al.  Airborne Doppler Lidar Wind Field Measurements , 1984, Topical Meeting on Optical Remote Sensing of the Atmosphere.

[75]  D. Lawrence,et al.  High-Resolution Atmospheric Sensing of Multiple Atmospheric Variables Using the DataHawk Small Airborne Measurement System , 2013 .

[76]  C. Goodman,et al.  Climate Impacts on Density Altitude and Aviation Operations , 2017 .

[77]  Z. Pu,et al.  An Overview of the MATERHORN Fog Project: Observations and Predictability , 2016, Pure and Applied Geophysics.

[78]  Bernard Tournier,et al.  In-flight performance of the infrared atmospheric sounding interferometer (IASI) on METOP-A , 2007, SPIE Optical Engineering + Applications.

[79]  S. H. Melfi,et al.  Observations of water vapor by ground-based microwave radiometers and Raman lidar , 1994 .

[80]  John K. Williams,et al.  Using random forests to diagnose aviation turbulence , 2013, Machine Learning.

[81]  Martin Weissmann,et al.  Height Correction of Atmospheric Motion Vectors Using Satellite Lidar Observations from CALIPSO , 2014 .

[82]  Péter Kardos,et al.  Development of a Complex Meteorological Support System for UAVs , 2013 .

[83]  F. Barbaresco,et al.  Wind Hazard and Turbulence Monitoring at Airports with Lidar, Radar, and Mode-S Downlinks: The UFO Project , 2018, Bulletin of the American Meteorological Society.

[84]  Tetsuya Theodore. Fujita,et al.  The Joint Airport Weather Studies Project , 1982 .

[85]  B. Brown,et al.  Intercomparison of In-Flight Icing Algorithms. Part I: WISP94 Real-Time Icing Prediction and Evaluation Program , 1997 .

[86]  Sergey Y. Matrosov,et al.  Attenuation-Based Estimates of Rainfall Rates Aloft with Vertically Pointing Ka-Band Radars , 2005 .

[87]  Ismail Gultepe,et al.  Inferring Low Cloud Base Heights at Night for Aviation Using Satellite Infrared and Surface Temperature Data , 2007 .

[88]  J. Bösenberg,et al.  Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications. , 1998, Applied optics.

[89]  Automated Turbulence Forecasting Strategies , 2016 .

[90]  Y. Hong,et al.  Evaluation of MRMS Snowfall Products over the Western United States , 2017 .

[91]  Donald R. Johnson,et al.  The Coupling of Upper and Lower Tropospheric Jet Streaks and Implications for the Development of Severe Convective Storms , 1979 .

[92]  E. Fontaine,et al.  Ice crystal sizes in high ice water content clouds. Part 2: Statistics of mass diameter percentiles in tropical convection observed during the HAIC/HIWC project. , 2017 .

[93]  A. Deluca,et al.  Scientific challenges of convective-scale numerical weather prediction , 2017 .

[94]  B. Golding Nimrod: a system for generating automated very short range forecasts , 1998 .

[95]  Cynthia K. Mueller,et al.  The Utility of Sounding and Mesonet Data to Nowcast Thunderstorm Initiation , 1993 .

[96]  B. Mayer,et al.  Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model , 2017 .

[97]  A Method for Adaptive Habit Prediction in Bulk Microphysical Models. Part II: Parcel Model Corroboration , 2013 .

[98]  Taneil Uttal,et al.  Daytime Global Cloud Typing from AVHRR and VIIRS: Algorithm Description, Validation, and Comparisons , 2005 .

[99]  Bahram Gharabaghi,et al.  Changes in Rainfall Extremes in Ontario , 2015 .

[100]  P. Joe,et al.  Roundhouse (RND) Mountain Top Research Site: Measurements and Uncertainties for Winter Alpine Weather Conditions , 2012, Pure and Applied Geophysics.

[101]  S. Fukao,et al.  A 35-GHz Scanning Doppler Radar for Fog Observations , 2003 .

[102]  G. P. van den Berg,et al.  Wind turbine power and sound in relation to atmospheric stability , 2008 .

[103]  Richard H. Jones Optimal Estimation of Initial Conditions for Numerical Prediction , 1965 .

[104]  S. Albers,et al.  Thermodynamic and liquid profiling during the 2010 Winter Olympics , 2013 .

[105]  Philip G. Gill,et al.  An ensemble based turbulence forecasting system , 2014 .

[106]  M. Politovich Aircraft Icing Caused by Large Supercooled Droplets , 1989 .

[107]  Kristopher M. Bedka,et al.  Nowcasting Convective Storm Initiation Using Satellite-Based Box-Averaged Cloud-Top Cooling and Cloud-Type Trends , 2011 .

[108]  V. Wulfmeyer,et al.  Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter. , 1998, Applied optics.

[109]  Roy Rasmussen,et al.  A Numerical Weather Model’s Ability to Predict Characteristics of Aircraft Icing Environments , 2017 .

[110]  A. Ryzhkov,et al.  Freezing of Raindrops in Deep Convective Updrafts: A Microphysical and Polarimetric Model , 2012 .

[111]  F. Zwiers,et al.  Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections , 2013 .

[112]  R. Sharman,et al.  Aviation Turbulence : Processes, Detection, Prediction , 2016 .

[113]  F. Gao,et al.  Estimation of TAMDAR Observational Error and Assimilation Experiments , 2012 .

[114]  William R. Burrows,et al.  Warm Season Lightning Probability Prediction for Canada and the Northern United States , 2005 .

[115]  Erik N. Rasmussen,et al.  The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2 , 2012 .

[116]  W. Melville,et al.  The Use of Ship-Launched Fixed-Wing UAVs for Measuring the Marine Atmospheric Boundary Layer and Ocean Surface Processes , 2016 .

[117]  Olivier Liechti,et al.  Intercomparison of Single-Column Numerical Models for the Prediction of Radiation Fog , 2007 .

[118]  Kristin M. Calhoun,et al.  Development of a Human–Machine Mix for Forecasting Severe Convective Events , 2018 .

[119]  L. Cornman Airborne In Situ Measurements of Turbulence , 2016 .

[120]  I. Gultepe Mountain Weather: Observation and Modeling , 2015 .

[121]  Roger A. Pielke,et al.  Large eddy simulation of microburst winds flowing around a building , 1993 .

[122]  James J. Simpson,et al.  Resuspension of Relic Volcanic Ash and Dust from Katmai: Still an Aviation Hazard , 2004 .

[123]  L. Uccellini On the Role of Upper Tropospheric Jet Streaks and Leeside Cyclogenesis in the Development of Low-Level Jets in the Great Plains , 1980 .

[124]  C. G. Wade A Multisensor Approach to Detecting Drizzle on ASOS , 2003 .

[125]  Hans A. Panofsky,et al.  An index of clear air turbulence , 1965 .

[126]  G. Mace,et al.  Tropical composition, cloud and climate coupling experiment validation for cirrus cloud profiling retrieval using cloudsat radar and CALIPSO lidar , 2010 .

[127]  David N. Whiteman,et al.  A Comparison of Water Vapor Measurements Made by Raman Lidar and Radiosondes , 1995 .

[128]  Sue Ellen Haupt,et al.  Artificial Intelligence Methods in the Environmental Sciences , 2008 .

[129]  C. Doswell Synoptic-Scale Environments Associated with High Plains Severe Thunderstorms. , 1980 .

[130]  Michael J. Pavolonis Advances in Extracting Cloud Composition Information from Spaceborne Infrared Radiances—A Robust Alternative to Brightness Temperatures. Part I: Theory , 2010 .

[131]  Steven E. Koch,et al.  The Emergence of Weather-Related Test Beds Linking Research and Forecasting Operations , 2013 .

[132]  Starr McGettigan,et al.  Weather Support to Deicing Decision Making (WSDDM) : A winter weather nowcasting system , 2001 .

[133]  B. Ferrier,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description , 1994 .

[134]  E. Fontaine,et al.  Ice Crystal Sizes in High Ice Water Content Clouds. Part I: On the Computation of Median Mass Diameter from In Situ Measurements , 2016 .

[135]  Paul D. Williams,et al.  Increased light, moderate, and severe clear-air turbulence in response to climate change , 2017, Advances in Atmospheric Sciences.

[136]  Fernando Porté-Agel,et al.  3D Turbulence Measurements Using Three Synchronous Wind Lidars: Validation against Sonic Anemometry , 2014 .

[137]  G. Ellrod,et al.  Applications of Geostationary Satellite Data to Aviation , 2019, Pure and Applied Geophysics.

[138]  D. Newton An Integrated Approach to the Problem of Aircraft Icing , 1978 .

[139]  Sue Ellen Haupt,et al.  Source Characterization with a Genetic Algorithm–Coupled Dispersion–Backward Model Incorporating SCIPUFF , 2007 .

[140]  Steven D. Miller,et al.  Estimating Three-Dimensional Cloud Structure via Statistically Blended Satellite Observations , 2014 .

[141]  J. C. Hubbert,et al.  Differential Reflectivity Calibration and Antenna Temperature , 2017 .

[142]  P. Hobbs,et al.  A 10-Yr Climatology Relating the Locations of Reported Tornadoes to the Quadrants of Upper-Level Jet Streaks , 2004 .

[143]  Bomin Sun,et al.  Time-Varying Biases in U.S. Total Cloud Cover Data , 2013 .

[144]  C. Velden,et al.  Hazard Avoidance Products for Convectively-Induced Turbulence in Support of High-Altitude Global Hawk Aircraft Missions , 2019, Pure and Applied Geophysics.

[145]  Oliver Reitebuch,et al.  Wind Lidar for Atmospheric Research , 2012 .

[146]  Jeff W. Brogden,et al.  Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation: Initial Operating Capabilities , 2016 .

[147]  Matthias Steiner,et al.  Probabilistic forecasts of mesoscale convective system initiation using the random forest data mining technique , 2016 .

[148]  N. Seaman,et al.  A Comparison Study of Convective Parameterization Schemes in a Mesoscale Model , 1997 .

[149]  Stanley G. Benjamin,et al.  Assessment of NWP Forecast Models in Simulating Offshore Winds through the Lower Boundary Layer by Measurements from a Ship-Based Scanning Doppler Lidar , 2017 .

[150]  John K. Williams,et al.  Remote Turbulence Detection Using Ground-Based Doppler Weather Radar , 2016 .

[151]  Wayne Sand,et al.  Icing Conditions Encountered by a Research Aircraft , 1984 .

[152]  Richard L. Bankert,et al.  Cloud Classification of AVHRR Imagery in Maritime Regions Using a Probabilistic Neural Network , 1994 .

[153]  Alexander Klein,et al.  Analyzing the Share of Individual Weather Factors Affecting NAS Performance Using the Weather Impacted Traffic Index , 2009 .

[154]  Ismail Gultepe,et al.  A New Visibility Parameterization for Warm-Fog Applications in Numerical Weather Prediction Models , 2006 .

[155]  Frank S. Marzano,et al.  Combining Microwave Radiometer and Wind Profiler Radar Measurements for High-Resolution Atmospheric Humidity Profiling , 2005 .

[156]  M. Witek,et al.  Simulations of Contrail Optical Properties and Radiative Forcing for Various Crystal Shapes , 2011 .

[157]  M. Khairoutdinov,et al.  A New Cloud Physics Parameterization in a Large-Eddy Simulation Model of Marine Stratocumulus , 2000 .

[158]  Sunil K. Sinha,et al.  WateriD User Manual , 2013 .

[159]  C. Masson,et al.  A Turbulence-Based Model for Resolving Velocity and Temperature Profiles in the Atmospheric Surface Layer , 2006 .

[160]  G. Thompson,et al.  Formation and Spread of Aircraft-Induced Holes in Clouds , 2011, Science.

[161]  L. Nance,et al.  A Modeling Study of Nonstationary Trapped Mountain Lee Waves. Part I: Mean-Flow Variability , 1997 .

[162]  John R. Walker,et al.  An Enhanced Geostationary Satellite–Based Convective Initiation Algorithm for 0–2-h Nowcasting with Object Tracking , 2012 .

[163]  Roy Rasmussen,et al.  Snow Nowcasting Using a Real-Time Correlation of Radar Reflectivity with Snow Gauge Accumulation , 2003 .

[164]  Pengfei Zhang,et al.  Polarimetric Radar Characteristics of Melting Hail. Part II: Practical Implications , 2013 .

[165]  Sonia M. Kreidenweis,et al.  The Impact of Giant Cloud Condensation Nuclei on Drizzle Formation in Stratocumulus: Implications for Cloud Radiative Properties , 1999 .

[166]  K. Shine,et al.  What are the implications of climate change for trans-Atlantic aircraft routing and flight time? , 2016 .

[167]  John Kochendorfer,et al.  How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed , 2012 .

[168]  D. F. Young,et al.  Transformation of contrails into cirrus during SUCCESS , 1998 .

[169]  G. Grell,et al.  A generalized approach to parameterizing convection combining ensemble and data assimilation techniques , 2002 .

[170]  J. Simpson,et al.  Airborne Asian Dust: Case Study of Long-Range Transport and Implications for the Detection of Volcanic Ash , 2003 .

[171]  Patrick Minnis,et al.  Determining the Flight Icing Threat to Aircraft with Single-Layer Cloud Parameters Derived from Operational Satellite Data , 2012 .

[172]  H. Glahn,et al.  The Use of Model Output Statistics (MOS) in Objective Weather Forecasting , 1972 .

[173]  An improvement in clear‐air turbulence forecasting based on spontaneous imbalance theory: the ULTURB algorithm , 2012 .

[174]  Donald W. Hillger,et al.  Improved detection of airborne volcanic ash using multispectral infrared satellite data , 2003 .

[175]  Gary P. Ellrod,et al.  An Objective Clear-Air Turbulence Forecasting Technique: Verification and Operational Use , 1992 .

[176]  P. Vachon,et al.  Impact of Satellite Winds on Marine Wind Simulations , 2008 .

[177]  Yun Qian,et al.  Some issues in uncertainty quantification and parameter tuning: a case study of convective parameterization scheme in the WRF regional climate model , 2011 .

[178]  Changyong Cao,et al.  On-Orbit Calibration Assessment of AVHRR Longwave Channels on MetOp-A Using IASI , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[179]  A. Heymsfield,et al.  Introduction Ice Fog, Ice Clouds, and Remote Sensing , 2016, Pure and Applied Geophysics.

[180]  Caiyan Lin,et al.  Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model , 2017, Journal of Meteorological Research.

[181]  Philip G. Gill Objective verification of World Area Forecast Centre clear air turbulence forecasts , 2014 .

[183]  William N. Chan,et al.  Impact of the North Atlantic Oscillation on Transatlantic Flight Routes and Clear-Air Turbulence , 2016 .

[184]  E. Ferrero,et al.  Physical simulation of atmospheric microbursts , 2014 .

[185]  Juha Kilpinen COMPUTER-AIDED WEATHER FORECASTING SYSTEM SET TO ENTER OPERATION IN SCANDINAVIA / , 1994 .

[186]  Kristin M. Calhoun,et al.  Evaluation of a Probabilistic Forecasting Methodology for Severe Convective Weather in the 2014 Hazardous Weather Testbed , 2015 .

[187]  Bjarne Hansen A Fuzzy Logic-Based Analog Forecasting System for Ceiling and Visibility , 2007 .

[188]  W. Paul Menzel,et al.  INTRODUCING THE NEXT-GENERATION ADVANCED BASELINE IMAGER ON GOES-R , 2005 .

[189]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[190]  Michael J. Pavolonis,et al.  Daytime Cloud Overlap Detection from AVHRR and VIIRS , 2004 .

[191]  Pedro M. M. Soares,et al.  Parameterization of the atmospheric boundary layer: A View from just above the inversion , 2008 .

[192]  Michael Hadjimichael,et al.  Remote cloud ceiling assessment using data-mining methods , 2004 .

[193]  Barbara G. Brown,et al.  Current Icing Potential: Algorithm Description and Comparison with Aircraft Observations , 2005 .

[194]  James J. Gurka,et al.  A review on ice fog measurements and modeling , 2015 .

[195]  William R. Moninger,et al.  AUTOMATED METEOROLOGICAL REPORTS FROM COMMERCIAL AIRCRAFT , 2003 .

[196]  Guosheng Liu,et al.  In Situ Aircraft Measurements of the Vertical Distribution of Liquid and Ice Water Content in Midlatitude Mixed-Phase Clouds , 2013 .

[197]  David C. Pieri,et al.  Failures in detecting volcanic ash from a satellite-based technique , 2000 .

[198]  Istvan Szunyogh,et al.  The North Pacific Experiment (NORPEX-98): Targeted Observations for Improved North American Weather Forecasts , 1999 .

[199]  Stanley G. Benjamin,et al.  Evaluation of Regional Aircraft Observations Using TAMDAR , 2010 .

[201]  William E. Eichinger,et al.  The Development of a Scanning Raman Water Vapor Lidar for Boundary Layer and Tropospheric Observations , 1999 .

[202]  S. F. J. De Wekker,et al.  Airborne Doppler Lidar Measurements of Valley Flows in Complex Coastal Terrain , 2012 .

[203]  Olivier Dupont,et al.  AROME–NWC: a new nowcasting tool based on an operational mesoscale forecasting system , 2015 .

[205]  P. Field,et al.  Ice-Phase Precipitation , 2017 .

[206]  David R. Bright,et al.  Using the Second-Generation GEFS Reforecasts to Predict Ceiling, Visibility, and Aviation Flight Category , 2017 .

[207]  G. Steeneveld,et al.  WRF Model Prediction of a Dense Fog Event Occurred During the Winter Fog Experiment (WIFEX) , 2018, Pure and Applied Geophysics.

[208]  B. Mayer,et al.  A Parametric Radiative Forcing Model for Contrail Cirrus , 2012 .

[209]  Manoj Joshi,et al.  Intensification of winter transatlantic aviation turbulence in response to climate change , 2013 .

[210]  Z. Pu,et al.  LIDAR-MEASURED WIND PROFILES The Missing Link in the Global Observing System , 2014 .

[211]  W. Kendall Melville,et al.  Development and Testing of Instrumentation for UAV-Based Flux Measurements within Terrestrial and Marine Atmospheric Boundary Layers , 2013 .

[212]  Eric Guilyardi,et al.  Two Independent Triggers for the Indian Ocean Dipole/Zonal Mode in a Coupled GCM , 2005 .

[213]  R. Stull,et al.  A Cell-Integrated Semi-Lagrangian Semi-Implicit Shallow-Water Model (CSLAM-SW) with Conservative and Consistent Transport , 2013 .

[214]  P. Minnis,et al.  Contrail radiative forcing over the Northern Hemisphere from 2006 Aqua MODIS data , 2013 .

[215]  Ólafur Rögnvaldsson,et al.  Improving High-Resolution Numerical Weather Simulations by Assimilating Data from an Unmanned Aerial System , 2012 .

[216]  Lawrence D. Carey,et al.  CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado , 1998 .

[217]  Barry E. Schwartz,et al.  The Quantitative Use of PIREPs in Developing Aviation Weather Guidance Products , 1996 .

[218]  Robert Sharman,et al.  Nature of Aviation Turbulence , 2016 .

[219]  P. Linden,et al.  Microbursts: a hazard for aircraft , 1985, Nature.

[220]  V. Broeke,et al.  Polarimetric Variability of Classic Supercell Storms as a Function of Environment , 2016 .

[221]  Gunnar Myhre,et al.  Global sensitivity experiments of the radiative forcing due to mineral aerosols , 2001 .

[222]  Shepard A. Clough,et al.  Retrieving Liquid Wat0er Path and Precipitable Water Vapor From the Atmospheric Radiation Measurement (ARM) Microwave Radiometers , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[223]  Roy Rasmussen,et al.  Winter Icing and Storms Project (WISP). , 1992 .

[224]  H. Panofsky,et al.  Clear air turbulence: a mystery may be unfolding. , 1970, Science.

[225]  M. Steiner,et al.  Consolidated storm prediction for aviation (CoSPA) , 2008, 2008 Integrated Communications, Navigation and Surveillance Conference.

[226]  M. Agelin-Chaab,et al.  A Meteorological Supersite for Aviation and Cold Weather Applications , 2019, Pure and Applied Geophysics.

[227]  S. H. Melfi,et al.  Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere. , 1992, Applied optics.

[228]  Robert L. Vislocky,et al.  An Automated, Observations-Based System for Short-Term Prediction of Ceiling and Visibility , 1997 .

[229]  P. W. Chan Performance and aviation applications of minisodars at Hong Kong International Airport , 2014 .

[230]  Barbara G. Brown,et al.  Intercomparison of In-Flight Icing Algorithms. Part II: Statistical Verification Results , 1997 .

[231]  Charlie N. Barron,et al.  Accuracy of 10 m winds from satellites and NWP products near land‐sea boundaries , 2008 .

[232]  Jian Zhang,et al.  National mosaic and multi-sensor QPE (NMQ) system description, results, and future plans , 2011 .

[233]  S. J. Weiss,et al.  Assessing Advances in the Assimilation of Radar Data and Other Mesoscale Observations within a Collaborative Forecasting-Research Environment , 2010 .

[234]  F. Ludlam FALL‐STREAK HOLES , 1956 .

[235]  Chad Baldi,et al.  Observations of the Boundary Layer near Tornadoes and in Supercells Using a Mobile, Collocated, Pulsed Doppler Lidar and Radar , 2014 .

[236]  Steven A. Rutledge,et al.  Nowcasting Storm Initiation and Growth Using GOES-8 and WSR-88D Data , 2003 .

[237]  Allen J. Riordan,et al.  Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 1: A 44-case study synoptic observational analyses , 2005 .

[238]  Leigh Orf,et al.  A Numerical Study of Traveling Microbursts , 1999 .

[239]  Tom Fahey,et al.  A History of Weather Reporting from Aircraft and Turbulence Forecasting for Commercial Aviation , 2016 .

[240]  Juanzhen Sun,et al.  Use of NWP for Nowcasting Convective Precipitation: Recent Progress and Challenges , 2014 .

[241]  Adrian E. Raftery,et al.  Probabilistic Visibility Forecasting Using Bayesian Model Averaging , 2011 .

[242]  Kristin M. Calhoun,et al.  Multi-Radar Multi-Sensor (MRMS) Severe Weather and Aviation Products: Initial Operating Capabilities , 2016 .

[243]  E. Browell,et al.  Recent Lidar Technology Developments and Their Influence on Measurements of Tropospheric Water Vapor , 1994 .

[244]  Andreas Fix Tunable Light Sources for Lidar Applications , 2012 .

[245]  William J. Koshak,et al.  The GOES-R GeoStationary Lightning Mapper (GLM) , 2012 .

[246]  T. Haiden,et al.  The Integrated Nowcasting through Comprehensive Analysis (INCA) System and Its Validation over the Eastern Alpine Region , 2011 .

[247]  R. Lawson,et al.  Cloud particle measurements in thunderstorm anvils and possible weather threat to aviation , 1996 .

[248]  Guillermo Rein,et al.  44th AIAA Aerospace Sciences Meeting and Exhibit , 2006 .

[249]  Terri Betancourt,et al.  NCAR Auto-Nowcast System , 2003 .

[250]  Charles A. Doswell,et al.  Short-Range Forecasting , 1986 .

[251]  Willi Schmid,et al.  On the Performance of a Low-Cost K-Band Doppler Radar for Quantitative Rain Measurements , 1999 .

[252]  Kevin W. Manning,et al.  Experiences with 0–36-h Explicit Convective Forecasts with the WRF-ARW Model , 2008 .

[253]  Janti Reid,et al.  A Satellite-Based Fog Detection Scheme Using Screen Air Temperature , 2007 .

[254]  Guifu Zhang,et al.  An Assessment of Droplet Size and Liquid Water Content Derived from Dual-Wavelength Radar Measurements to the Application of Aircraft Icing Detection , 2001 .

[255]  Steven A. Lack,et al.  A Summary of Turbulence Forecasting Techniques Used by the National Weather Service , 2016 .

[256]  Z. Pu,et al.  Sensitivity of Numerical Simulations of a Mesoscale Convective System to Ice Hydrometeors in Bulk Microphysical Parameterization , 2019, Pure and Applied Geophysics.

[257]  Y.-L. Lin,et al.  Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 2: Hydrostatic mesoscale numerical simulations of supergradient wind flow and streamwise ageostrophic frontogenesis , 2002 .

[258]  W. J. Steenburgh,et al.  An Evaluation of Mesoscale-Model-Based Model Output Statistics (MOS) during the 2002 Olympic and Paralympic Winter Games , 2004 .

[259]  S. Ştefănescu,et al.  An overview of the variational assimilation in the ALADIN/France numerical weather‐prediction system , 2005 .

[260]  Riko Oki,et al.  THE GLOBAL PRECIPITATION MEASUREMENT (GPM) MISSION FOR SCIENCE AND SOCIETY. , 2017, Bulletin of the American Meteorological Society.

[261]  Michael J. Pavolonis,et al.  A Daytime Complement to the Reverse Absorption Technique for Improved Automated Detection of Volcanic Ash , 2006 .

[262]  A. Tafferner,et al.  ADWICE: Advanced Diagnosis and Warning System for Aircraft Icing Environments , 2003 .

[263]  Z. Pu,et al.  Numerical Prediction of Cold Season Fog Events over Complex Terrain: the Performance of the WRF Model During MATERHORN-Fog and Early Evaluation , 2016, Pure and Applied Geophysics.

[264]  Stanley G. Benjamin,et al.  Evaluating and Improving NWP Forecast Models for the Future: How the Needs of Offshore Wind Energy Can Point the Way , 2017, Bulletin of the American Meteorological Society.

[265]  Robert Sharman,et al.  An Integrated Approach to Mid- and Upper-Level Turbulence Forecasting , 2006 .

[266]  D. Baumgardner,et al.  Ice Fog: The Current State of Knowledge and Future Challenges , 2017 .

[267]  J. Bösenberg,et al.  Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar. , 1995, Optics letters.

[268]  Robert Sharman,et al.  Influences of Moist Convection on a Cold-Season Outbreak of Clear-Air Turbulence (CAT) , 2012 .

[269]  J. Harrington,et al.  A Method for Adaptive Habit Prediction in Bulk Microphysical Models. Part I: Theoretical Development , 2013 .

[270]  Fred H. Proctor,et al.  Numerical Simulations of an Isolated Microburst. Part II: Sensitivity Experiments , 1989 .

[271]  B. Soden,et al.  Comparison of upper tropospheric water vapor from GOES, Raman lidar, and cross-chain loran atmospheric sounding system measurements , 1994 .

[272]  Stephen A. Cohn,et al.  Radar Measurements of Turbulent Eddy Dissipation Rate in the Troposphere: A Comparison of Techniques , 1995 .

[273]  J. Knox,et al.  Improvements to an Operational Clear-Air Turbulence Diagnostic Index by Addition of a Divergence Trend Term , 2010 .

[274]  F. Zwiers,et al.  Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate , 2013 .

[275]  C. Velden,et al.  Recent Innovations in Deriving Tropospheric Winds from Meteorological Satellites , 2005 .

[276]  W. Vaughan,et al.  Wind Field Measurement in the Nonprecipitous Regions Surrounding Severe Storms by an Airborne Pulsed Doppler Lidar System. , 1978 .

[277]  Measuring Water Vapor with Differential Absorption Lidar , 2012 .

[278]  J. Otkin,et al.  Objective Satellite-Based Detection of Overshooting Tops Using Infrared Window Channel Brightness Temperature Gradients , 2010 .

[279]  J. B. Mead,et al.  Remote Sensing of Clouds and Fog with a 1.4-mm Radar , 1989 .

[280]  L. F. Hubert,et al.  WIND ESTIMATION FROM GEOSTATIONARY-SATELLITE PICTURES , 1971 .

[281]  Elizabeth E. Ebert,et al.  Sydney 2000 Forecast Demonstration Project: Convective Storm Nowcasting , 2004 .

[282]  Alexander V. Ryzhkov,et al.  Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals , 2012 .

[283]  Juanzhen Sun,et al.  Nowcasting Thunderstorms: A Status Report , 1998 .

[284]  Linda S. Wharton,et al.  Comparing PIREPs with NAWAU Turbulence and Icing Forecasts: Issues and Results , 1996 .

[285]  D. Santek,et al.  The Impact of Satellite-Derived Polar Winds on Lower-Latitude Forecasts , 2010 .

[286]  Thomas J. Kopp,et al.  Distinguishing Aerosols from Clouds in Global, Multispectral Satellite Data with Automated Cloud Classification Algorithms , 2008 .

[287]  T. Glickman,et al.  Glossary of Meteorology , 2000 .

[288]  J. K. Ayers,et al.  Linear contrail and contrail cirrus properties determined from satellite data , 2013 .

[289]  Banavar Sridhar,et al.  Combined winds and turbulence prediction system for automated air-traffic management applications , 2015 .

[290]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[291]  Terrence F. Hock,et al.  The NCAR–NOAA Global Hawk Dropsonde System , 2018, Journal of Atmospheric and Oceanic Technology.

[292]  James R. Cowie,et al.  DATA FUSION ENABLES BETTER RECOGNITION OF CEILING AND VISIBILITY HAZARDS IN AVIATION , 2015 .

[293]  Tobias Wehr,et al.  A 3D cloud‐construction algorithm for the EarthCARE satellite mission , 2011 .

[294]  Eric Loew,et al.  S-Pol’s Polarimetric Data Reveal Detailed Storm Features (and Insect Behavior) , 2018, Bulletin of the American Meteorological Society.

[295]  Julia Gottschall,et al.  Can wind lidars measure turbulence , 2011 .

[296]  Richard E. Orville,et al.  Development of the National Lightning Detection Network , 2008 .

[297]  P. Williams Transatlantic flight times and climate change , 2016 .

[298]  J. Bösenberg,et al.  Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar. , 1996, Optics letters.

[299]  H. Chun,et al.  Evaluations of Upper-Level Turbulence Diagnostics Performance Using the Graphical Turbulence Guidance (GTG) System and Pilot Reports (PIREPs) over East Asia , 2011 .

[300]  R. Frehlich,et al.  Climatology of Velocity and Temperature Turbulence Statistics Determined from Rawinsonde and ACARS/AMDAR Data , 2010 .

[301]  C. Velden,et al.  Comparisons of Satellite-Derived Atmospheric Motion Vectors, Rawinsondes, and NOAA Wind Profiler Observations , 2009 .

[302]  Jonathan J. Gourley,et al.  Toward a User-Centered Design of a Weather Forecasting Decision-Support Tool , 2017 .

[303]  Timothy L. Olander,et al.  The Impact of Multispectral GOES-8 Wind Information on Atlantic Tropical Cyclone Track Forecasts in 1995. Part I: Dataset Methodology, Description, and Case Analysis , 1998 .

[304]  James J. Gurka,et al.  Ice fog in Arctic during FRAM-Ice Fog Project: Aviation and nowcasting applications , 2014 .

[305]  George A. Isaac,et al.  The Canadian Airport Nowcasting System (CAN‐Now) , 2014 .

[306]  Corinne S. Morse,et al.  Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements , 1995 .

[307]  Jerry M. Straka,et al.  A Three-Dimensional Numerical Analysis of Colliding Microburst Outflow Dynamics , 1996 .

[308]  Roy M. Endlich,et al.  CLEAR AIR TURBULENCE FREQUENCY AS A FUNCTION OF WIND SHEAR AND DEFORMATION1 , 1966 .

[309]  Matthew R. Kumjian,et al.  Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications , 2013 .

[310]  John McCarthy,et al.  Microburst Wind Structure and Evaluation of Doppler Radar for Airport Wind Shear Detection , 1984 .

[311]  Robert L. Vislocky,et al.  Generalized Additive Models versus Linear Regression in Generating Probabilistic MOS Forecasts of Aviation Weather Parameters , 1995 .

[312]  S. Trier,et al.  Influences of Gravity Waves on Convectively Induced Turbulence (CIT): A Review , 2019, Pure and Applied Geophysics.

[313]  Noaa Nesdis CENTER for SATELLITE APPLICATIONS and RESEARCH GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Ocean Dynamics , 2010 .

[314]  Robert Sharman,et al.  Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review , 2012 .

[315]  M. Richman,et al.  Euclidean Distance as a Similarity Metric for Principal Component Analysis , 2001 .

[316]  Andreas Bott,et al.  A Radiation Fog Model with a Detailed Treatment of the Interaction between Radiative Transfer and Fog Microphysics , 1990 .

[317]  Fred H. Proctor,et al.  Numerical simulations of an isolated microburst. I - Dynamics and structure , 1988 .

[318]  W. Paul Menzel,et al.  Satellite-Based Atmospheric Infrared Sounder Development and Applications , 2017 .

[319]  H. Gerber,et al.  Homogeneous Ice Nucleation in Subtropical and Tropical Convection and Its Influence on Cirrus Anvil Microphysics , 2005 .

[320]  Patrick Minnis,et al.  Global distribution of contrail radiative forcing , 1999 .

[321]  E. Clothiaux,et al.  The Potential of 8-mm Radars for Remotely Sensing Cloud Drop Size Distributions , 1997 .

[322]  A. Heymsfield,et al.  Homogeneous Ice Nucleation and Supercooled Liquid Water in Orographic Wave Clouds , 1993 .

[323]  Matthew R. Kumjian,et al.  Principles and Applications of Dual-Polarization Weather Radar. Part I: Description of the Polarimetric Radar Variables , 2013 .

[324]  V. Masson,et al.  The AROME-France Convective-Scale Operational Model , 2011 .

[325]  Z. Pu Surface Data Assimilation and Near-Surface Weather Prediction over Complex Terrain , 2017 .

[326]  Yu Liu,et al.  An Improved Cloud Classification Algorithm for China’s FY-2C Multi-Channel Images Using Artificial Neural Network , 2009, Sensors.

[327]  Matthias Steiner,et al.  Assessment of the High-Resolution Rapid Refresh Model’s Ability to Predict Mesoscale Convective Systems Using Object-Based Evaluation , 2015 .

[328]  Jeffrey L. Anderson,et al.  Selection of Initial Conditions for Ensemble Forecasts in a Simple Perfect Model Framework , 1996 .

[329]  H. Österle,et al.  A High-Resolution Simulation of the Year 2003 for Germany Using the Regional Model COSMO , 2012 .

[330]  Stevie Roquelaure,et al.  A Local Ensemble Prediction System for Fog and Low Clouds: Construction, Bayesian Model Averaging Calibration, and Validation , 2008 .

[331]  E. Williams,et al.  The Identification and Verification of Hazardous Convective Cells over Oceans Using Visible and Infrared Satellite Observations , 2008 .

[332]  Volker Wulfmeyer,et al.  Investigation of Turbulent Processes in the Lower Troposphere with Water Vapor DIAL and Radar–RASS , 1999 .

[333]  Fuzhong Weng,et al.  Inter-comparison of NPP/CrIS radiances with VIIRS, AIRS, and IASI: a post-launch calibration assessment , 2012, Asia-Pacific Environmental Remote Sensing.

[334]  A. Heymsfield,et al.  Cirrus crystal nucleation by homogeneous freezing of solution droplets , 1989 .

[335]  Ryan E. Jewell,et al.  Evaluation of Alberta Hail Growth Model Using Severe Hail Proximity Soundings from the United States , 2004 .

[336]  Alexander Koch,et al.  Climate Optimized Air Transport , 2012 .

[337]  Thierry Bergot,et al.  Numerical Forecasting of Radiation Fog. Part II: A Comparison of Model Simulation with Several Observed Fog Events , 1994 .

[338]  P. Vrancken,et al.  Airborne Remote Detection of Turbulence with Forward-Pointing LIDAR , 2016 .

[339]  H. Fernando,et al.  Coplanar Doppler Lidar Retrieval of Rotors from T-REX , 2010 .

[340]  Rebecca J. Barthelmie,et al.  The influence of non‐logarithmic wind speed profiles on potential power output at Danish offshore sites , 2005 .

[341]  R. Neely,et al.  Raman Lidar Profiling of Tropospheric Water Vapor over Kangerlussuaq, Greenland , 2011 .

[342]  M. Gallagher,et al.  The backscatter cloud probe – a compact low-profile autonomous optical spectrometer , 2013 .

[343]  Alfredo Prata,et al.  Volcanic Ash Hazards to Aviation , 2015 .

[344]  E. Mandel An Early Look at the Development of an Unmanned Automated Surface Aviation Weather Observation System , 1975 .

[345]  Steven D. Miller,et al.  Comparison of GOES Cloud Classification Algorithms Employing Explicit and Implicit Physics , 2009 .

[346]  J. Bognar,et al.  Supercooled liquid water content profiling case studies with a new vibrating wire sonde compared to a ground-based microwave radiometer , 2014 .

[347]  A Comparative Verification of Localized Aviation Model Output Statistics Program (LAMP) and Numerical Weather Prediction (NWP) Model Forecasts of Ceiling Height and Visibility , 2010 .

[348]  G. Grell,et al.  A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh , 2016 .

[349]  S. E. Haupt,et al.  Using Artificial Intelligence to Improve Real-Time Decision-Making for High-Impact Weather , 2017 .

[350]  Hartmut Höller,et al.  Eddy Dissipation Rates in Thunderstorms Estimated by Doppler Radar in Relation to Aircraft In Situ Measurements , 2001 .

[351]  G. Isaac,et al.  Large Particles in Supercooled Regions of Northern Canadian Cumulus Clouds , 1979 .

[352]  David C. Pieri,et al.  Operational implications of airborne volcanic ash , 2000 .

[353]  John McCarthy,et al.  The microburst - Hazard to aircraft , 1984 .

[354]  Marcia K. Politovich,et al.  Toward the Improvement of Aircraft-Icing Forecasts for the Continental United States , 1992 .

[355]  András Zénó Gyöngyösi,et al.  Weather Forecasting System for the Unmanned Aircraft Systems (UAS) Missions with the Special Regard to Visibility Prediction, in Hungary , 2016 .

[356]  Steven D. Miller,et al.  The GOES-R Proving Ground: Accelerating User Readiness for the Next-Generation Geostationary Environmental Satellite System , 2012 .

[357]  H. Appleman The Formation of Exhaust Condensation Trails by Jet Aircraft , 1953 .

[358]  Joanne Simpson,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part II: Simulations of Convective Storms in Different Large-Scale Environments and Comparisons with other Bulk Parameterizations , 1995 .

[359]  John Turner,et al.  Cloud track winds in the polar regions from sequences of AVHRR images , 1989 .

[360]  Patrick Minnis,et al.  Storm-Scale Data Assimilation and Ensemble Forecasting with the NSSL Experimental Warn-on-Forecast System. Part II: Combined Radar and Satellite Data Experiments , 2016 .

[361]  Roy Rasmussen,et al.  Event-Based Climatology and Typology of Fog in the New York City Region , 2007 .

[362]  N. Seaman,et al.  Assimilating Surface Data to Improve the Accuracy of Atmospheric Boundary Layer Simulations , 2001 .

[363]  Z. Pu,et al.  Numerical Simulations of an Inversion Fog Event in the Salt Lake Valley during the MATERHORN-Fog Field Campaign , 2019, Pure and Applied Geophysics.

[364]  Low Level Turbulence Algorithm Testing at-or-below 10,000 ft , 2004 .

[365]  John Y. N. Cho Enhanced Signal Processing Algorithms for the ASR-9 Weather Systems Processor , 2015 .

[366]  Bob Glahn,et al.  A LAMP–HRRR MELD for Improved Aviation Guidance , 2017 .

[367]  Patrick Minnis,et al.  Near-real time cloud retrievals from operational and research meteorological satellites , 2008, Remote Sensing.

[368]  David J. Brinker,et al.  The NASA Icing Remote Sensing System , 2005 .

[369]  Timothy J. Schmit,et al.  A Closer Look at the ABI on the GOES-R Series , 2017 .

[370]  Daniel J. McEvoy,et al.  Worldwide Marine Fog Occurrence and Climatology , 2017 .

[371]  H. Morrison,et al.  Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests , 2015 .

[372]  Dmitri Moisseev,et al.  Recent advances in classification of observations from dual polarization weather radars , 2013 .

[373]  George A. Isaac,et al.  Aircraft observations of cloud droplet number concentration: Implications for climate studies , 2004 .

[374]  M. Yamamoto,et al.  MU Radar and Lidar Observations of Clear-Air Turbulence underneath Cirrus , 2010 .

[375]  John P. Oakley,et al.  The Fog Remote Sensing and Modeling Field Project , 2009 .

[376]  Travis M. Smith,et al.  Data Mining Storm Attributes from Spatial Grids , 2009 .

[377]  J. Knox,et al.  AVIATION METEOROLOGY | Clear Air Turbulence , 2015 .

[378]  T. Casadevall,et al.  The 1989–1990 eruption of Redoubt Volcano, Alaska: impacts on aircraft operations , 1994 .

[379]  Robert G. Hallowell,et al.  Automated microburst wind-shear prediction , 1995 .

[380]  P. Quinn,et al.  Measurements of Atmospheric Aerosol Vertical Distributions above Svalbard, Norway using Unmanned Aerial Systems (UAS) , 2013 .

[381]  Binbin Zhou,et al.  Fog Prediction from a Multimodel Mesoscale Ensemble Prediction System , 2010 .

[382]  Alan W. Black,et al.  Characteristics of Winter-Precipitation-Related Transportation Fatalities in the United States , 2015 .

[383]  D. Starr,et al.  Dynamical Structure and Turbulence in Cirrus Clouds: Aircraft Observations during FIRE , 1995 .

[384]  W. Paul Menzel,et al.  A Comparison of Ground and Satellite Observations of Cloud Cover , 1993 .

[385]  Wayne Sand,et al.  Effects of icing on performance of a research airplane , 1984 .

[386]  M. Pagowski,et al.  Fog Research: A Review of Past Achievements and Future Perspectives , 2007 .

[387]  Ivy Tan,et al.  Sensitivity Study on the Influence of Cloud Microphysical Parameters on Mixed-Phase Cloud Thermodynamic Phase Partitioning in CAM5 , 2016 .

[388]  Dale A. Gillette,et al.  A wind tunnel simulation of the erosion of soil: Effect of soil texture, sandblasting, wind speed, and soil consolidation on dust production , 1978 .

[389]  Alexander Scharnweber,et al.  The Wake Vortex Prediction and Monitoring System WSVBS Part II: Performance and ATC Integration at Frankfurt Airport , 2009 .

[390]  Robert M. Banta,et al.  Doppler Lidar Estimation of Mixing Height Using Turbulence, Shear, and Aerosol Profiles , 2009 .

[391]  Barry E. Schwartz,et al.  A Comparison of Temperature and Wind Measurements from ACARS-Equipped Aircraft and Rawinsondes , 1995 .

[392]  J. Walter Strapp,et al.  The Ice Particle Threat to Engines in Flight , 2006 .

[393]  Patrick Minnis,et al.  Aviation Applications for Satellite-Based Observations of Cloud Properties, Convection Initiation, In-Flight Icing, Turbulence, and Volcanic Ash , 2007 .

[394]  Alexander Kann,et al.  Enhanced short‐range forecasting of sub‐inversion cloudiness in complex terrain , 2015 .

[395]  Stephen S. Weygandt,et al.  The High Resolution Rapid Refresh (HRRR): an hourly updated convection resolving model utilizing radar reflectivity assimilation from the RUC / RR , 2009 .

[396]  Eric Defer,et al.  Detecting Clouds Associated with Jet Engine Ice Crystal Icing. , 2019, Bulletin of the American Meteorological Society.

[397]  Alexander V. Ryzhkov,et al.  Polarimetric Radar Observations and Interpretation of Co-Cross-Polar Correlation Coefficients , 2002 .

[398]  R. Endlich The Mesoscale Structure of Some Regions of Clear-Air Turbulence , 1964 .

[399]  Thomas T. Warner,et al.  Nonhydrostatic, Mesobeta-Scale Model Simulations of Cloud Ceiling and Visibility for an East Coast Winter Precipitation Event , 1999 .

[400]  John A. Knox,et al.  Possible Mechanisms of Clear-Air Turbulence in Strongly Anticyclonic Flows , 1997 .