Optimal pursuit of moving targets using dynamic Voronoi diagrams
暂无分享,去创建一个
[1] Leonidas J. Guibas,et al. Voronoi Diagrams of Moving Points , 1998, Int. J. Comput. Geom. Appl..
[2] Kokichi Sugihara,et al. Voronoi Diagram in the Flow Field , 2003, ISAAC.
[3] E. Zermelo. Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung , 1931 .
[4] J. Klamka. Controllability of dynamical systems , 1991, Mathematica Applicanda.
[5] M. Bardi. Some applications of viscosity solutions to optimal control and differential games , 1997 .
[6] Constantin Carathéodory,et al. Calculus of variations and partial differential equations of the first order , 1965 .
[7] V. Jurdjevic. Geometric control theory , 1996 .
[8] Andrea Bacciotti,et al. Local Stabilizability of Nonlinear Control Systems , 1991, Series on Advances in Mathematics for Applied Sciences.
[9] Lamberto Cesari,et al. Optimization-Theory And Applications , 1983 .
[10] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[11] Olivier Devillers,et al. Dog Bites Postman: Point Location in the Moving Voronoi Diagram and Related Problems , 1993, Int. J. Comput. Geom. Appl..
[12] J. Ball. OPTIMIZATION—THEORY AND APPLICATIONS Problems with Ordinary Differential Equations (Applications of Mathematics, 17) , 1984 .
[13] E B Lee,et al. Foundations of optimal control theory , 1967 .
[14] Marina L. Gavrilova,et al. Updating the topology of the dynamic Voronoi diagram for spheres in Euclidean d-dimensional space , 2003, Comput. Aided Geom. Des..
[15] Ulysse Serres. On the curvature of two-dimensional optimal control systems and Zermelo’s navigation problem , 2006 .
[16] Kokichi Sugihara,et al. Stable marker-particle method for the Voronoi diagram in a flow field , 2007 .
[17] Efstathios Bakolas,et al. The Zermelo-Voronoi Diagram: a dynamic partition problem , 2010, Proceedings of the 2010 American Control Conference.
[18] Thomas Roos,et al. Voronoi Diagrams over Dynamic Scenes , 1993, Discret. Appl. Math..
[19] Olivier Devillers,et al. Queries on Voronoi Diagrams of Moving Points , 1996, Comput. Geom..