Optimal pursuit of moving targets using dynamic Voronoi diagrams

We consider Voronoi-like partitions for a team of moving targets distributed in the plane, such that each set in this partition is uniquely associated with a particular moving target in the following sense: a pursuer residing inside a given set of the partition can intercept this moving target faster than any other pursuer outside this set. It is assumed that each moving target employs its own “evading” strategy in response to the pursuer actions. In contrast to standard formulations of problems of this kind in the literature, the evading strategy does necessarily restrict the evader to be slower than its pursuer. In the special case when all moving targets employ a uniform evading strategy, the previous problem reduces to the characterization of the Zermelo-Voronoi diagram.

[1]  Leonidas J. Guibas,et al.  Voronoi Diagrams of Moving Points , 1998, Int. J. Comput. Geom. Appl..

[2]  Kokichi Sugihara,et al.  Voronoi Diagram in the Flow Field , 2003, ISAAC.

[3]  E. Zermelo Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung , 1931 .

[4]  J. Klamka Controllability of dynamical systems , 1991, Mathematica Applicanda.

[5]  M. Bardi Some applications of viscosity solutions to optimal control and differential games , 1997 .

[6]  Constantin Carathéodory,et al.  Calculus of variations and partial differential equations of the first order , 1965 .

[7]  V. Jurdjevic Geometric control theory , 1996 .

[8]  Andrea Bacciotti,et al.  Local Stabilizability of Nonlinear Control Systems , 1991, Series on Advances in Mathematics for Applied Sciences.

[9]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[10]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[11]  Olivier Devillers,et al.  Dog Bites Postman: Point Location in the Moving Voronoi Diagram and Related Problems , 1993, Int. J. Comput. Geom. Appl..

[12]  J. Ball OPTIMIZATION—THEORY AND APPLICATIONS Problems with Ordinary Differential Equations (Applications of Mathematics, 17) , 1984 .

[13]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[14]  Marina L. Gavrilova,et al.  Updating the topology of the dynamic Voronoi diagram for spheres in Euclidean d-dimensional space , 2003, Comput. Aided Geom. Des..

[15]  Ulysse Serres On the curvature of two-dimensional optimal control systems and Zermelo’s navigation problem , 2006 .

[16]  Kokichi Sugihara,et al.  Stable marker-particle method for the Voronoi diagram in a flow field , 2007 .

[17]  Efstathios Bakolas,et al.  The Zermelo-Voronoi Diagram: a dynamic partition problem , 2010, Proceedings of the 2010 American Control Conference.

[18]  Thomas Roos,et al.  Voronoi Diagrams over Dynamic Scenes , 1993, Discret. Appl. Math..

[19]  Olivier Devillers,et al.  Queries on Voronoi Diagrams of Moving Points , 1996, Comput. Geom..