On Solving the Coronal Heating Problem

The question of what heats the solar corona remains one of the most important problems in astrophysics. Finding a definitive solution involves a number of challenging steps, beginning with an identification of the energy source and ending with a prediction of observable quantities that can be compared directly with actual observations. Critical intermediate steps include realistic modeling of both the energy release process (the conversion of magnetic stress energy or wave energy into heat) and the response of the plasma to the heating. A variety of difficult issues must be addressed: highly disparate spatial scales, physical connections between the corona and lower atmosphere, complex microphysics, and variability and dynamics. Nearly all of the coronal heating mechanisms that have been proposed produce heating that is impulsive from the perspective of elemental magnetic flux strands. It is this perspective that must be adopted to understand how the plasma responds and radiates. In our opinion, the most promising explanation offered so far is Parker's idea of nanoflares occurring in magnetic fields that become tangled by turbulent convection. Exciting new developments include the identification of the “secondary instability” as the likely mechanism of energy release and the demonstration that impulsive heating in sub-resolution strands can explain certain observed properties of coronal loops that are otherwise very difficult to understand. Whatever the detailed mechanism of energy release, it is clear that some form of magnetic reconnection must be occurring at significant altitudes in the corona (above the magnetic carpet), so that the tangling does not increase indefinitely. This article outlines the key elements of a comprehensive strategy for solving the coronal heating problem and warns of obstacles that must be overcome along the way.

[1]  S. Solanki Small-scale solar magnetic fields: An overview , 1993 .

[2]  Eric Ronald Priest,et al.  Magnetic Reconnection: Unsteady Reconnection: The Tearing Mode , 2000 .

[3]  M. Aschwanden,et al.  Modeling of Coronal EUV Loops Observed with TRACE. I. Hydrostatic Solutions with Nonuniform Heating , 2001 .

[4]  Spiro K. Antiochos,et al.  The Structure of the Static Corona and Transition Region , 1986 .

[5]  J. Ionson Resonant absorption of Alfvenic surface waves and the heating of solar coronal loops , 1978 .

[6]  R. Muller Properties of Small Magnetic Elements , 1994 .

[7]  S. E. Tanner,et al.  Coronal Seismology and the Propagation of Acoustic Waves along Coronal Loops , 2004, astro-ph/0412085.

[8]  Joseph M. Davila,et al.  Measuring Active and Quiet-Sun Coronal Plasma Properties with Extreme-Ultraviolet Spectra from SERTS , 1996 .

[9]  M. Aschwanden Physics of the Solar Corona. An Introduction , 2004 .

[10]  J. E. Beene,et al.  The Effect of Background Subtraction on the Temperature of EIT Coronal Loops , 2003 .

[11]  T. Roudier,et al.  The proper motion of network bright points and the heating of the solar corona , 1994 .

[12]  E. Landi,et al.  Models for Solar Magnetic Loops. III. Dynamic Models and Coronal Diagnostic Spectrometer Observations , 2004 .

[13]  S. Antiochos,et al.  The Origin of High-Speed Motions and Threads in Prominences , 2006 .

[14]  Spiro K. Antiochos,et al.  Numerical modeling of quasi-static coronal loops. I - Uniform energy input , 1979 .

[15]  U. Feldman,et al.  Morphology of the Quiet Solar Upper Atmosphere in the 4 × 104 < Te < 1.4 × 106 K Temperature Regime , 1999 .

[16]  L. Sigalotti,et al.  Dynamics of solar coronal loops , 2003 .

[17]  Klaus Galsgaard,et al.  Heating and activity of the solar corona: 1. Boundary shearing of an initially homogeneous magnetic field , 1996 .

[18]  H. Warren,et al.  Can TRACE Extreme-Ultraviolet Observations of Cooling Coronal Loops Be Used to Determine the Heating Parameters? , 2004 .

[19]  George L. Withbroe,et al.  Mass and Energy Flow in the Solar Chromosphere and Corona , 1977 .

[20]  Fabio Reale,et al.  Emission Measure Distribution in Loops Impulsively Heated at the Footpoints , 2004, astro-ph/0412482.

[21]  Spiro K. Antiochos,et al.  An Explanation for the “Switch-On” Nature of Magnetic Energy Release and Its Application to Coronal Heating , 2005 .

[22]  Quentin F. Stout,et al.  Solution-adaptive magnetohydrodynamics for space plasmas: Sun-to-Earth simulations , 2004, Computing in Science & Engineering.

[23]  J. Schmelz,et al.  Multithermal Analysis of a SOHO/CDS Coronal Loop , 2005, astro-ph/0511487.

[24]  Dieter Biskamp,et al.  Nonlinear Magnetohydrodynamics: Index , 1993 .

[25]  James A. Klimchuk,et al.  Nanoflare Heating of the Corona Revisited , 2004 .

[26]  James A. Klimchuk,et al.  A Nanoflare Explanation for the Heating of Coronal Loops Observed by Yohkoh , 1997 .

[27]  J. Davila,et al.  Coronal heating by the resonant absorption of Alfven waves: The effect of viscous stress tensor , 1993 .

[28]  S. Antiochos,et al.  Coronal energy release via ideal three-dimensional instability three-dimensional instability , 2003 .

[29]  V. Nakariakov,et al.  TRACE observation of damped coronal loop oscillations: implications for coronal heating , 1999, Science.

[30]  J. Zirker Coronal heating , 1993 .

[31]  Joseph M. Davila,et al.  A Self-consistent Model for the Resonant Heating of Coronal Loops: The Effects of Coupling with the Chromosphere , 1998 .

[32]  T. Forbes,et al.  A catastrophe mechanism for coronal mass ejections , 1991 .

[33]  R. Erdélyi,et al.  Coronal Loop Heating by Random Energy Releases , 2002 .

[34]  R. Sudan,et al.  Energy dissipation of Alfven wave packets deformed by irregular magnetic fields in solar-coronal arches , 1989 .

[35]  R. Kopp,et al.  Coronal Heating by Nanoflares: Individual Events and Global Energetics , 1993 .

[36]  Joseph M. Davila,et al.  Heating of the solar corona by the resonant absorption of Alfven waves , 1987 .

[37]  P. MacNeice,et al.  Are Magnetic Dips Necessary for Prominence Formation? , 2001 .

[38]  E. Parker Comments on the reconnexion rate of magnetic fields , 1973, Journal of Plasma Physics.

[39]  Jean-Pierre Delaboudiniere,et al.  Three-dimensional Stereoscopic Analysis of Solar Active Region Loops. I. SOHO/EIT Observations at Temperatures of (1.0-1.5) × 106 K , 1999 .

[40]  P. Sturrock,et al.  Chromospheric Magnetic Reconnection and Its Possible Relationship to Coronal Heating , 1999 .

[41]  L. Golub,et al.  Constraints on Active Region Coronal Heating , 2003 .

[42]  J. Hollweg,et al.  Alfvn waves in the solar atmosphere: II: Open and closed magnetic flux tubes , 1981 .

[43]  Hardi Peter,et al.  On the nature of the transition region from the chromosphere to the corona of the Sun , 2001 .

[44]  P. MacNeice,et al.  The Inability of Steady-Flow Models to Explain the Extreme-Ultraviolet Coronal Loops , 2004 .

[45]  Carolus J. Schrijver,et al.  Is the Quiet-Sun Corona a Quasi-steady, Force-free Environment? , 2005 .

[46]  Gottingen,et al.  Quiet-Sun Magnetic Fields at High Spatial Resolution , 2002, astro-ph/0211454.

[47]  H. Hara,et al.  Spatial and Temporal Properties of Hot and Cool Coronal Loops , 2003 .

[48]  R. Kulsrud Magnetic reconnection: Sweet-Parker versus Petschek , 2000, astro-ph/0007075.

[49]  Eric Ronald Priest,et al.  Kink instability of solar coronal loops as the cause of solar flares , 1979 .

[50]  Toshifumi Shimizu,et al.  Energetics and Occurrence Rate of Active-Region Transient Brightenings and Implications for the Heating of the Active-Region Corona , 1995 .

[51]  T. Yokoyama,et al.  Magnetohydrodynamic Simulation of a Solar Flare with Chromospheric Evaporation Effect Based on the Magnetic Reconnection Model , 2001 .

[52]  M. Aschwanden,et al.  Elementary Loop Structures in the Solar Corona Analyzed from TRACE Triple-Filter Images , 2005 .

[53]  P. Dmitruk,et al.  Magnetohydrodynamic Turbulence of Coronal Active Regions and the Distribution of Nanoflares , 1998 .

[54]  M. Goossens,et al.  Fast and Alfvén waves driven by azimuthal footpoint motions - I. Periodic driver , 2002 .

[55]  A. V. Ballegooijen,et al.  Cascade of magnetic energy as a mechanism of coronal heating , 1985 .

[56]  H. Mason,et al.  A self-consistent treatment of radiation in coronal loop modelling , 2003 .

[57]  M. Aschwanden,et al.  The Coronal Heating Mechanism as Identified by Full-Sun Visualizations , 2004 .

[58]  F. Clette,et al.  Active region EUV transient brightenings – First Results by EIT of SOHO JOP 80 , 1999 .

[59]  R. Ulrich Observations of Magnetohydrodynamic Oscillations in the Solar Atmosphere with Properties of Alfvén Waves , 1996 .

[60]  J. Ionson Resonant electrodynamic heating of stellar coronal loops - An LRC circuit analog , 1980 .

[61]  S. Antiochos,et al.  The effects of nonequilibrium ionization on the radiative losses of the solar corona , 1990 .

[62]  S. Suess,et al.  Alfven wave trapping, network microflaring, and heating in solar coronal holes , 1991 .

[63]  M. Aschwanden,et al.  Constraining the Properties of Nonradiative Heating of the Coronae of Cool Stars and the Sun , 2002 .

[64]  B. Gudiksen,et al.  An Ab Initio Approach to the Solar Coronal Heating Problem , 2004, astro-ph/0407266.

[65]  M. Ugai Computer studies on the spontaneous fast reconnection model as a nonlinear instability , 1999 .

[66]  J. V. Hollweg Resonances of coronal loops , 1984 .

[67]  J. Scudder Why all stars should possess circumstellar temperature inversions , 1992 .

[68]  H. Mason,et al.  Solar active regions: SOHO/CDS and TRACE observations of quiescent coronal loops , 2003 .

[69]  S. Antiochos,et al.  The Implications of 3D for Solar MHD Modelling , 1997 .

[70]  M. Velli,et al.  Nonlinear Magnetohydrodynamic Evolution of Line-tied Coronal Loops , 1998 .

[71]  M. Berger Rigorous new limits on magnetic helicity dissipation in the solar corona , 1984 .

[72]  P. Sturrock,et al.  The possible role of MHD waves in heating the solar corona , 1994 .

[73]  M. Shay,et al.  Production of energetic electrons during magnetic reconnection. , 2003, Physical review letters.

[74]  E. Parker Nanoflares and the solar X-ray corona , 1988 .

[75]  Jean Hebb Swank,et al.  X-ray observations of BL Lacertae objects , 1978 .

[76]  Judith L. Lean,et al.  THE SUN'S VARIABLE RADIATION AND ITS RELEVANCE FOR EARTH1 , 1997 .

[77]  D. Schnack,et al.  The Viability of Ohmic Dissipation as a Coronal Heating Source , 1996 .

[78]  K. Shibata,et al.  Relation between Thermal and Magnetic Properties of Active Regions as a Probe of Coronal Heating Mechanisms , 2001 .

[79]  D. Longcope Topology and current ribbons: A model for current, reconnection and flaring in a complex, evolving corona , 1996 .

[80]  T. Berger,et al.  On the Dynamics of Small-Scale Solar Magnetic Elements , 1996 .

[81]  K. L. Harvey,et al.  Large-scale coronal heating by the small-scale magnetic field of the Sun , 1998, Nature.

[82]  E. Priest,et al.  Statistical Flux Tube Properties of 3D Magnetic Carpet Fields , 2003 .

[83]  A. Hood,et al.  DISCRETE RANDOM HEATING EVENTS IN CORONAL LOOPS , 1997 .

[84]  W. Kerner,et al.  Numerical simulation of coronal heating by resonant absorption of Alfvén waves , 1989 .

[85]  Å. Nordlund,et al.  Bulk Heating and Slender Magnetic Loops in the Solar Corona , 2002 .

[86]  Ashis Bhattacharjee,et al.  Impulsive Magnetic Reconnection in the Earth's Magnetotail and the Solar Corona , 2004 .

[87]  D. Uzdensky Petschek-like Reconnection with Current-driven Anomalous Resistivity and Its Application to Solar Flares , 2002, astro-ph/0212398.

[88]  L. Porter,et al.  Scaling of heating rates in solar coronal loops , 1995, Nature.

[89]  R. Roussel-Dupre Nonequilibrium ionization due to thermal diffusion and mass flows. [in solar atmosphere] , 1980 .

[90]  U. Narain,et al.  Chromospheric and coronal heating mechanisms II , 1996 .

[91]  D. Longcope A Model for Current Sheets and Reconnection in X-Ray Bright Points , 1998 .

[92]  Scott W. McIntosh,et al.  Waves in the Magnetized Solar Atmosphere. II. Waves from Localized Sources in Magnetic Flux Concentrations , 2003 .

[93]  J. Linker,et al.  Including the Transition Region in Models of the Large-Scale Solar Corona , 2001 .

[94]  H. Socas-Navarro,et al.  Magnetic Properties of Photospheric Regions with Very Low Magnetic Flux , 2001, astro-ph/0110025.

[95]  R. Rosner,et al.  Alfvén Wave Transmission and Heating of Solar Coronal Loops , 1998 .

[96]  L. Porter,et al.  Soft X-Ray Loops and Coronal Heating , 1995 .

[97]  P. Cargill,et al.  Spectroscopic Diagnostics of Nanoflare-heated Loops , 2001 .

[98]  R. Walsh,et al.  Intermittent heating in a model of solar coronal loops , 2000 .

[99]  Peter J. Cargill,et al.  Some Implications of the Nanoflare Concept , 1994 .

[100]  J. B. Taylor,et al.  Relaxation of toroidal plasma and generation of reverse magnetic fields , 1974 .

[101]  M. Linton,et al.  Reconnection of Twisted Flux Tubes as a Function of Contact Angle , 2001 .

[102]  J. Cirtain,et al.  The Inadequacy of Temperature Measurements in the Solar Corona through Narrowband Filter and Line Ratios , 2002 .

[103]  S. Serio,et al.  A Brightening Coronal Loop Observed by TRACE. II. Loop Modeling and Constraints on Heating , 2000 .

[104]  Antonino Francesco Lanza,et al.  A Transient Heating Model for Coronal Structure and Dynamics , 2003 .

[105]  J. Ireland,et al.  The heating of the solar corona , 2003 .

[106]  P. Démoulin,et al.  Magnetic Field and Plasma Scaling Laws: Their Implications for Coronal Heating Models , 2000 .

[107]  C. Schrijver,et al.  The topology of a mixed-polarity potential field, and inferences for the heating of the quiet solar corona , 2002 .

[108]  L. Golub,et al.  Determination of Flare Heating and Cooling Using the Transition Region and Coronal Explorer , 2000 .

[109]  J. Boris,et al.  Solar transition region response to variations in the heating rate , 1982 .

[110]  Three Criteria to Discriminate between Elementary and Composite Coronal Loops , 2005 .

[111]  E. DeLuca,et al.  Isothermal Bias of the “Filter Ratio” Method for Observations of Multithermal Plasma , 2005 .

[112]  H. Warren,et al.  Transition Region and Coronal Explorer and Soft X-Ray Telescope Active Region Loop Observations: Comparisons with Static Solutions of the Hydrodynamic Equations , 2003 .

[113]  W. Collins The theory of magnetohydrodynamic wave generation by localized sources. III - Efficiency of plasma heating by dissipation of far-field waves. [in solar corona] , 1992 .

[114]  W. Grotian Zur Frage der Deutung der Linien im Spektrum der Sonnenkorona , 1939, Naturwissenschaften.

[115]  M. Hoshino Forced magnetic reconnection in a plasma sheet with localized resistivity profile excited by lower hybrid drift type instability , 1991 .

[116]  Uncertainties in Dielectronic Recombination Rate Coefficients: Effects on Solar and Stellar Upper Atmosphere Abundance Determinations , 2001, astro-ph/0108026.

[117]  P. Mazzotta,et al.  Ionization Balance for Optically Thin Plasmas: Rate Coefficients for all Atoms and Ions of the Elements H to Ni and implication for the calculated X-ray spectrum , 1998, astro-ph/9806391.

[118]  J. Virmont,et al.  Nonlocal heat transport due to steep temperature gradients , 1983 .

[119]  J. Linker,et al.  Calculating the Thermal Structure of Solar Active Regions in Three Dimensions , 2005 .

[120]  H. Mason,et al.  The radiative response of solar loop plasma subject to transient heating , 2003 .

[121]  H. Warren,et al.  Evolving Active Region Loops Observed with the Transition Region and Coronal Explorer. I. Observations , 2003 .

[122]  Harry P. Warren,et al.  Cooling Active Region Loops Observed with SXT and TRACE , 2005 .

[123]  K. L. Harvey,et al.  The photospheric magnetic flux budget , 1994 .

[124]  M. Aschwanden,et al.  Damping Time Scaling of Coronal Loop Oscillations Deduced from Transition Region and Coronal Explorer Observations , 2002 .

[125]  Harry P. Warren,et al.  Hydrodynamic Modeling of Active Region Loops , 2002 .

[126]  H. Mason,et al.  CHIANTI - an atomic database for emission lines - I. Wavelengths greater than 50 Å , 1997 .

[127]  A FLUX-TUBE TECTONICS MODEL FOR SOLAR CORONAL HEATING DRIVEN BY THE MAGNETIC CARPET , 2002 .

[128]  U. Feldman,et al.  Elemental Abundances in the Solar Upper Atmosphere Derived by Spectroscopic Means , 2003 .

[129]  G. Rottman,et al.  The solar coronal density irregularity n squared bar/(n bar) squared derived from simultaneous measurements of the EUV and K-coronal brightness , 1990 .

[130]  E. N. Parker,et al.  Magnetic Neutral Sheets in Evolving Fields - Part Two - Formation of the Solar Corona , 1983 .

[131]  A. Hood,et al.  Longitudinal intensity oscillations in coronal loops observed with TRACE – II. Discussion of Measured Parameters , 2002 .

[132]  Harry P. Warren,et al.  Evolving Active Region Loops Observed with the Transition Region and Coronal explorer. II. Time-dependent Hydrodynamic Simulations , 2003 .

[133]  J. Aly,et al.  Current sheets in two-dimensional potential magnetic fields. III. Formation in complex topology configurations and application to coronal heating. , 1997 .

[134]  E. Avrett,et al.  Energy balance in the solar transition region. I - Hydrostatic thermal models with ambipolar diffusion , 1990 .

[135]  Michael Hesse,et al.  Geospace Environmental Modeling (GEM) magnetic reconnection challenge , 2001 .

[136]  S. Antiochos,et al.  Reconnection-driven Current Filamentation in Solar Arcades , 1996 .

[137]  H. Warren,et al.  Reconciling Hydrodynamic Simulations with Spectroscopic Observations of Solar Flares , 2005 .

[138]  N. Nitta The relation between hot and cool loops , 2000 .

[139]  Å. Nordlund,et al.  Magnetoacoustic Waves and Their Generation by Convection , 1991 .

[140]  P. Démoulin,et al.  The Long-Term Evolution of AR 7978: Testing Coronal Heating Models , 2003 .

[141]  J. L. Culhane,et al.  Solar cycle variation of the temperature structure within the cores of coronal streamers , 2002 .

[142]  The Dynamic Formation of Prominence Condensations , 1998, astro-ph/9808199.

[143]  Eugene N. Parker,et al.  Heating solar coronal holes , 1991 .

[144]  J. Klimchuk,et al.  Coronal Loop Heating by Nanoflares: The Impact of the Field-aligned Distribution of the Heating on Loop Observations , 2005 .

[145]  J. Davila,et al.  Coronal Heating by the Resonant Absorption of Alfven Waves: Importance of the Global Mode and Scaling Laws , 1993 .

[146]  J. Karpen,et al.  Nonlocal thermal transport in solar flares , 1986 .

[147]  D. Müller,et al.  Dynamics of solar coronal loops I. Condensation in cool loops and its effect on transition region lines , 2003 .

[148]  Y. Katsukawa,et al.  Scaling Laws for a Nanoflare-Heated Solar Corona , 2000 .

[149]  J. Hollweg,et al.  Alfvén waves in the solar atmosphere , 1978 .

[150]  Enrico Landi,et al.  Chianti-an atomic database for euv emission lines , 2000 .

[151]  Juan M. Fontenla,et al.  Energy Balance in the Solar Transition Region. II. Effects of Pressure and Energy Input on Hydrostatic Models , 1991 .