Temperature-Induced Increase of Spin Spiral Periods.
暂无分享,去创建一个
[1] R. Wiesendanger,et al. Tailoring noncollinear magnetism by misfit dislocation lines , 2016, 1610.06785.
[2] O. Eriksson,et al. Finite-temperature interatomic exchange and magnon softening in Fe overlayers on Ir(001) , 2016 .
[3] U. Nowak,et al. Skyrmions with Attractive Interactions in an Ultrathin Magnetic Film. , 2016, Physical review letters.
[4] A. Fert,et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. , 2016, Nature nanotechnology.
[5] R. Wiesendanger,et al. Pattern formation in skyrmionic materials with anisotropic environments , 2016, 1603.01045.
[6] R. Wiesendanger,et al. Electric-field-driven switching of individual magnetic skyrmions. , 2016, Nature nanotechnology.
[7] A. Locatelli,et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.
[8] R. Wiesendanger,et al. Guiding Spin Spirals by Local Uniaxial Strain Relief. , 2016, Physical review letters.
[9] E. Simon,et al. Complex magnetic phase diagram and skyrmion lifetime in an ultrathin film from atomistic simulations , 2015, 1510.04812.
[10] A. N’Diaye,et al. Room temperature skyrmion ground state stabilized through interlayer exchange coupling , 2015 .
[11] S. Heinze,et al. Engineering skyrmions in transition-metal multilayers for spintronics , 2015, Nature Communications.
[12] Kang L. Wang,et al. Blowing magnetic skyrmion bubbles , 2015, Science.
[13] L. Szunyogh,et al. Magnetic phase diagram of an Fe monolayer on W(110) and Ta(110) surfaces based on ab initio calculations , 2015, 1502.07510.
[14] U. Nowak,et al. Thermal properties of a spin spiral: Manganese on tungsten(110) , 2015 .
[15] Y. Meng,et al. Direct evidence of antiferromagnetic exchange interaction in Fe(001) films: Strong magnon softening at the high-symmetryM¯point , 2014 .
[16] R. Wiesendanger,et al. Thermal stability of an interface-stabilized skyrmion lattice. , 2014, Physical review letters.
[17] S. Heinze,et al. Tailoring magnetic skyrmions in ultra-thin transition metal films , 2014, Nature Communications.
[18] G. M. Stocks,et al. Spin-correlations and magnetic structure in an Fe monolayer on 5d transition metal surfaces , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.
[19] L. Sandratskii,et al. Direct probing of the exchange interaction at buried interfaces. , 2013, Nature nanotechnology.
[20] O. Eriksson,et al. Interatomic exchange interactions for finite-temperature magnetism and nonequilibrium spin dynamics. , 2013, Physical review letters.
[21] A. Fert,et al. Skyrmions on the track. , 2013, Nature nanotechnology.
[22] S. Heinze,et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .
[23] U. Nowak,et al. Atomistic spin model based on a spin-cluster expansion technique: Application to the IrMn3/Co interface , 2010, 1010.2375.
[24] J. Arblaster. Crystallographic Properties of Ruthenium , 2010 .
[25] L. Sandratskii,et al. New model for magnetism in ultrathin fcc Fe on Cu(001). , 2009, Physical review letters.
[26] M. Bode,et al. Temperature and size dependence of antiferromagnetism in mn nanostructures. , 2009, Physical Review Letters.
[27] S. Parkin,et al. Magnetic Domain-Wall Racetrack Memory , 2008, Science.
[28] M. Fedin,et al. High-field EPR reveals the strongly temperature-dependent exchange interaction in "breathing" crystals Cu(hfac)2L(R). , 2008, Journal of the American Chemical Society.
[29] R. Wiesendanger,et al. Coverage-dependent spin reorientation transition temperature of the Fe double-layer on W(1 1 0) observed by scanning tunneling microscopy , 2006 .
[30] S. Heinze,et al. Observation of a complex nanoscale magnetic structure in a hexagonal Fe monolayer. , 2006, Physical review letters.
[31] U. Nowak,et al. Temperature-dependent magnetic properties of FePt: Effective spin Hamiltonian model , 2004, physics/0411020.
[32] Liu,et al. Magnetic Frustration in Ultrathin Fe Films. , 1995, Physical review letters.
[33] P. J. Jensen,et al. Calculation of the film-thickness-dependence of the Curie temperature in thin transition metal films , 1992 .
[34] Kirschner,et al. Curie temperature of ultrathin films of fcc-cobalt epitaxially grown on atomically flat Cu(100) surfaces. , 1990, Physical review letters.
[35] G. Lander,et al. Magnetisation and neutron scattering studies of multiaxial magnetic ordering in USb0.9Te0.1 , 1979 .
[36] T. Moriya. New Mechanism of Anisotropic Superexchange Interaction , 1960 .
[37] Physical Review Letters 63 , 1989 .
[38] Y. Iźyumov. REVIEWS OF TOPICAL PROBLEMS: Modulated, or long-periodic, magnetic structures of crystals , 1984 .
[39] I. Dzyaloshinsky. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .