Temperature-Induced Increase of Spin Spiral Periods.

Spin-polarized scanning tunneling microscopy investigations reveal a significant increase of the magnetic period of spin spirals in three-atomic-layer-thick Fe films on Ir(111), from about 4 nm at 8 K to about 65 nm at room temperature. We attribute this considerable influence of temperature on the magnetic length scale of noncollinear spin states to different exchange interaction coefficients in the different Fe layers. We thus propose a classical spin model that reproduces the experimental observations and in which the crucial feature is the presence of magnetically coupled atomic layers with different interaction strengths. This model might also apply for many other systems, especially magnetic multilayers.

[1]  R. Wiesendanger,et al.  Tailoring noncollinear magnetism by misfit dislocation lines , 2016, 1610.06785.

[2]  O. Eriksson,et al.  Finite-temperature interatomic exchange and magnon softening in Fe overlayers on Ir(001) , 2016 .

[3]  U. Nowak,et al.  Skyrmions with Attractive Interactions in an Ultrathin Magnetic Film. , 2016, Physical review letters.

[4]  A. Fert,et al.  Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. , 2016, Nature nanotechnology.

[5]  R. Wiesendanger,et al.  Pattern formation in skyrmionic materials with anisotropic environments , 2016, 1603.01045.

[6]  R. Wiesendanger,et al.  Electric-field-driven switching of individual magnetic skyrmions. , 2016, Nature nanotechnology.

[7]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[8]  R. Wiesendanger,et al.  Guiding Spin Spirals by Local Uniaxial Strain Relief. , 2016, Physical review letters.

[9]  E. Simon,et al.  Complex magnetic phase diagram and skyrmion lifetime in an ultrathin film from atomistic simulations , 2015, 1510.04812.

[10]  A. N’Diaye,et al.  Room temperature skyrmion ground state stabilized through interlayer exchange coupling , 2015 .

[11]  S. Heinze,et al.  Engineering skyrmions in transition-metal multilayers for spintronics , 2015, Nature Communications.

[12]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[13]  L. Szunyogh,et al.  Magnetic phase diagram of an Fe monolayer on W(110) and Ta(110) surfaces based on ab initio calculations , 2015, 1502.07510.

[14]  U. Nowak,et al.  Thermal properties of a spin spiral: Manganese on tungsten(110) , 2015 .

[15]  Y. Meng,et al.  Direct evidence of antiferromagnetic exchange interaction in Fe(001) films: Strong magnon softening at the high-symmetryM¯point , 2014 .

[16]  R. Wiesendanger,et al.  Thermal stability of an interface-stabilized skyrmion lattice. , 2014, Physical review letters.

[17]  S. Heinze,et al.  Tailoring magnetic skyrmions in ultra-thin transition metal films , 2014, Nature Communications.

[18]  G. M. Stocks,et al.  Spin-correlations and magnetic structure in an Fe monolayer on 5d transition metal surfaces , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  L. Sandratskii,et al.  Direct probing of the exchange interaction at buried interfaces. , 2013, Nature nanotechnology.

[20]  O. Eriksson,et al.  Interatomic exchange interactions for finite-temperature magnetism and nonequilibrium spin dynamics. , 2013, Physical review letters.

[21]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[22]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .

[23]  U. Nowak,et al.  Atomistic spin model based on a spin-cluster expansion technique: Application to the IrMn3/Co interface , 2010, 1010.2375.

[24]  J. Arblaster Crystallographic Properties of Ruthenium , 2010 .

[25]  L. Sandratskii,et al.  New model for magnetism in ultrathin fcc Fe on Cu(001). , 2009, Physical review letters.

[26]  M. Bode,et al.  Temperature and size dependence of antiferromagnetism in mn nanostructures. , 2009, Physical Review Letters.

[27]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[28]  M. Fedin,et al.  High-field EPR reveals the strongly temperature-dependent exchange interaction in "breathing" crystals Cu(hfac)2L(R). , 2008, Journal of the American Chemical Society.

[29]  R. Wiesendanger,et al.  Coverage-dependent spin reorientation transition temperature of the Fe double-layer on W(1 1 0) observed by scanning tunneling microscopy , 2006 .

[30]  S. Heinze,et al.  Observation of a complex nanoscale magnetic structure in a hexagonal Fe monolayer. , 2006, Physical review letters.

[31]  U. Nowak,et al.  Temperature-dependent magnetic properties of FePt: Effective spin Hamiltonian model , 2004, physics/0411020.

[32]  Liu,et al.  Magnetic Frustration in Ultrathin Fe Films. , 1995, Physical review letters.

[33]  P. J. Jensen,et al.  Calculation of the film-thickness-dependence of the Curie temperature in thin transition metal films , 1992 .

[34]  Kirschner,et al.  Curie temperature of ultrathin films of fcc-cobalt epitaxially grown on atomically flat Cu(100) surfaces. , 1990, Physical review letters.

[35]  G. Lander,et al.  Magnetisation and neutron scattering studies of multiaxial magnetic ordering in USb0.9Te0.1 , 1979 .

[36]  T. Moriya New Mechanism of Anisotropic Superexchange Interaction , 1960 .

[37]  Physical Review Letters 63 , 1989 .

[38]  Y. Iźyumov REVIEWS OF TOPICAL PROBLEMS: Modulated, or long-periodic, magnetic structures of crystals , 1984 .

[39]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .