Every connected regular graph of even degree is a Schreier coset graph

Abstract Using Petersen's theorem, that every regular graph of even degree is 2-factorable, it is proved that every connected regular graph of even degree is isomorphic to a Schreier coset graph. The method used is a special application of the permutation voltage graph construction developed by the author and Tucker. This work is related to graph imbedding theory, because a Schreier coset graph is a covering space of a bouquet of circles.