How Photosynthetic Bacteria Harvest Solar Energy

The past several years have seen dramatic progress in our understanding of the reactions taking place in the early events of photosynthesis. This has been in large part due to research involving purple photosynthetic bacteria ([16][1], [28][2], [34][3], [35][4],[46][5], [56][6]). These anaerobic

[1]  R. van Grondelle,et al.  Photosynthetic antenna proteins: 100 ps before photochemistry starts. , 1989, Trends in biochemical sciences.

[2]  D. Youvan,et al.  Chromosomal deletion and plasmid complementation of the photosynthetic reaction center and light-harvesting genes from Rhodopseudomonas capsulata. , 1985, Gene.

[3]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[4]  Douglas C. Youvan,et al.  Directed Mutations Affecting the Putative Bacteriochlorophyll‐Binding Sites in the Light‐Harvesting I Antenna of Rhodobacter capsulatus , 1988 .

[5]  V. Sundström,et al.  Energy transfer and trapping in photosynthesis , 1994 .

[6]  N. Isaacs,et al.  A model for the photosynthetic apparatus of purple bacteria , 1996 .

[7]  A. Verméglio,et al.  Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides , 1999, The EMBO journal.

[8]  K Schulten,et al.  Model for the light-harvesting complex I (B875) of Rhodobacter sphaeroides. , 1998, Biophysical journal.

[9]  C. Hunter,et al.  Characterization and complementation of a mutant of Rhodobacter sphaeroides with a chromosomal deletion in the light-harvesting (LH2) genes. , 1989, Journal of general microbiology.

[10]  W. R. Sistrom,et al.  The photosynthetic bacteria , 1978 .

[11]  V. Sundström,et al.  Photosynthetic Light-Harvesting Pigment−Protein Complexes: Toward Understanding How and Why , 1996 .

[12]  E. Wehrli,et al.  The structure of the photoreceptor unit of Rhodopseudomonas viridis , 1984, The EMBO journal.

[13]  N. Isaacs,et al.  Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. , 1996, Structure.

[14]  C. Hunter,et al.  The relationship between carotenoid biosynthesis and the assembly of the light-harvesting LH2 complex in Rhodobacter sphaeroides. , 1994, The Biochemical journal.

[15]  G. Fowler,et al.  Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting 2 mutants of Rhodobacter sphaeroides with alterations at alpha-Tyr-44 and alpha-Tyr-45. , 1994, The Biochemical journal.

[16]  T. Lilburn,et al.  Isolation of the PufX protein from Rhodobacter capsulatus and Rhodobacter sphaeroides: evidence for its interaction with the alpha-polypeptide of the core light-harvesting complex. , 1998, Biochemistry.

[17]  D. Bryant The Molecular Biology of Cyanobacteria , 1994, Advances in Photosynthesis.

[18]  Klaus Schulten,et al.  Linear Polyene Electronic Structure and Potential Surfaces , 1982 .

[19]  S M Prince,et al.  Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: modular assembly and protein pigment interactions. , 1997, Journal of molecular biology.

[20]  H. Zuber,et al.  The light‐harvesting core‐complex and the B820‐subunit from Rhodopseudomonas marina. Part II. Electron microscopic characterisation , 1992, FEBS letters.

[21]  Yoshinori Fujiyoshi,et al.  Atomic model of plant light-harvesting complex by electron crystallography , 1994, Nature.

[22]  M F Schmid,et al.  Structure and X-ray amino acid sequence of a bacteriochlorophyll A protein from Prosthecochloris aestuarii refined at 1.9 A resolution. , 1986, Journal of molecular biology.

[23]  B. Robert,et al.  Structures of antenna complexes of several Rhodospirillales from their resonance Raman spectra , 1985 .

[24]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[25]  H. Frank,et al.  The photochemistry and function of carotenoids in photosynthesis , 1993 .

[26]  W. R. Sistrom,et al.  CONTROL OF SYNTHESIS OF REACTION CENTER BACTERIOCHLOROPHYLL IN PHOTOSYNTHETIC BACTERIA , 1972, Photochemistry and photobiology.

[27]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[28]  Andrew J. Young,et al.  The Photochemistry of Carotenoids , 1999, Advances in Photosynthesis and Respiration.

[29]  R. Cogdell Carotenoids in photosynthesis , 1978, Photochemistry and photobiology.

[30]  P. McGlynn,et al.  The LH1-RC core complex of Rhodobacter sphaeroides: interaction between components, time-dependent assembly, and topology of the PufX protein. , 1998, Biochimica et biophysica acta.

[31]  D. Oesterhelt,et al.  Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 1. PufX is required for efficient light-driven electron transfer and photophosphorylation under anaerobic conditions. , 1995, Biochemistry.

[32]  H. Zuber,et al.  The light-harvesting polypeptides of Rhodospirillum rubrum. II. Localisation of the amino-terminal regions of the light-harvesting polypeptides B 870-alpha and B 870-beta and the reaction-centre subunit L at the cytoplasmic side of the photosynthetic membrane of Rhodospirillum rubrum G-9+. , 1984, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[33]  Herman J. M. Kramer,et al.  Pigment organization of the B800–850 antenna complex of Rhodopseudomonas sphaeroides , 1984 .

[34]  K. Diederichs,et al.  Structural Basis of Light Harvesting by Carotenoids: Peridinin-Chlorophyll-Protein from Amphidinium carterae , 1996, Science.

[35]  M. Newton,et al.  Conformational and environmental effects on bacteriochlorophyll optical spectra: correlations of calculated spectra with structural results , 1990 .

[36]  Two-dimensional crystallization and preliminary structure analysis of light harvesting II (B800-850) complex from the purple bacterium Rhodovulum sulfidophilum. , 1995, Journal of molecular biology.

[37]  J. Olsen,et al.  PROTEIN STRUCI'URE MODELLING OF THE BACTERIAL LIGHT‐HARVESTING COMPLEX , 1994, Photochemistry and photobiology.

[38]  T. Bird,et al.  Regulatory Circuits Controlling Photosynthesis Gene Expression , 1996, Cell.

[39]  P. Fromme,et al.  Photosystem I of Synechococcus elongatus at 4 A resolution: comprehensive structure analysis. , 1997, Journal of molecular biology.

[40]  T. Lilburn,et al.  Pleiotropic effects of pufX gene deletion on the structure and function of the photosynthetic apparatus of Rhodobacter capsulatus. , 1992, Biochimica et biophysica acta.

[41]  H. Zuber,et al.  The six fold symmetry of the B880 light-harvesting complex and the structure of the photosynthetic membranes of Rhodopseudomonas marina. , 1994, Biological chemistry Hoppe-Seyler.

[42]  P. McGlynn,et al.  The Rhodobacter sphaeroides PufX protein is not required for photosynthetic competence in the absence of a light harvesting system , 1994, FEBS letters.

[43]  James Barber,et al.  Three-dimensional structure of the plant photosystem II reaction centre at 8 Å resolution , 1998, Nature.

[44]  H. Zuber,et al.  Structure and Organization of Purple Bacterial Antenna Complexes , 1995 .

[45]  J. Zurdo,et al.  A structural role of the carotenoid in the light-harvesting II protein of Rhodobacter capsulatus. , 1993, The Biochemical journal.

[46]  R. W. Visschers,et al.  Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands , 1992, Nature.

[47]  P. Bullough,et al.  The 8.5 A projection map of the light‐harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. , 1995, The EMBO journal.

[48]  K Schulten,et al.  Architecture and mechanism of the light-harvesting apparatus of purple bacteria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[49]  G. Drews,et al.  The transverse membrane orientation of the light‐harvesting and reaction centre polypeptides of Rhodopseudomonas capsulata, investigated by surface iodination , 1983 .

[50]  T. Walz,et al.  Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 A, LH1 and RC-LH1 at 25 A. , 1998, Journal of molecular biology.

[51]  C. Hunter Genetic Manipulation of the Antenna Complexes of Purple Bacteria , 1995 .

[52]  J. Amesz,et al.  Energy transfer between the reaction center and the antenna in purple bacteria , 1993 .

[53]  P. Loach,et al.  Structure-Function Relationships in Core Light-Harvesting Complexes (LHI) As Determined by Characterization of the Structural Subunit and by Reconstitution Experiments , 1995 .

[54]  J. Beatty,et al.  Demonstration of the Key Role Played by the PufX Protein in the Functional and Structural Organization of Native and Hybrid Bacterial Photosynthetic Core Complexes , 1998, Journal of bacteriology.

[55]  N. Isaacs,et al.  The structure and function of the LH2 (B800-850) complex from the purple photosynthetic bacterium Rhodopseudomonas acidophila strain 10050. , 1997, Progress in biophysics and molecular biology.

[56]  W. Sidler,et al.  Phycobilisome and Phycobiliprotein Structures , 1994 .

[57]  R. Cogdell,et al.  Antenna organization of Rhodopseudomonas acidophila: a study of the excitation migration , 1991 .

[58]  T. Gillbro,et al.  Singlet Excited States and the Light‐Harvesting Function of Carotenoids in Bacterial Photosynthesis , 1996 .

[59]  D. Oesterhelt,et al.  Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex. , 1995, Biochemistry.

[60]  K. Miller Three-dimensional structure of a photosynthetic membrane , 1982, Nature.

[61]  Tõnu Pullerits,et al.  Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit , 1999 .

[62]  R. Cogdell,et al.  The isolation and partial characterisation of the light-harvesting pigment-protein complement of Rhodopseudomonas acidophila , 1983 .

[63]  P. McGlynn,et al.  Consequences for the Organization of Reaction Center-Light Harvesting Antenna 1 (LH1) Core Complexes of Rhodobacter sphaeroides Arising from Deletion of Amino Acid Residues from the C Terminus of the LH1 Polypeptide (*) , 1996, The Journal of Biological Chemistry.

[64]  K. J. Woolley,et al.  The membrane location of the B890-complex from Rhodospirillum rubrum and the effect of carotenoid on the conformation of its two apoproteins exposed at the cytoplasmic surface , 1986 .

[65]  T. G. Owens,et al.  Femtosecond energy-transfer processes in the B800-850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1. , 1991, Biochimica et biophysica acta.

[66]  Robert Eugene Blankenship,et al.  Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. , 1997, Journal of molecular biology.

[67]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[68]  K. Schulten,et al.  The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. , 1996, Structure.