Doxycycline Indirectly Inhibits Proteolytic Activation of Tryptic Kallikrein-Related Peptidases and Activation of Cathelicidin

[1]  K. Reiss,et al.  Inhibition of kallikrein-related peptidases by the serine protease inhibitor of Kazal-type 6 , 2011, Peptides.

[2]  Y. Jang,et al.  Immunohistochemical expression of matrix metalloproteinases in the granulomatous rosacea compared with the non‐granulomatous rosacea , 2011, Journal of the European Academy of Dermatology and Venereology : JEADV.

[3]  A. Shalita,et al.  Clinical applications of non-antimicrobial tetracyclines in dermatology. , 2011, Pharmacological research.

[4]  M. Stack,et al.  Kallikrein-5 Promotes Cleavage of Desmoglein-1 and Loss of Cell-Cell Cohesion in Oral Squamous Cell Carcinoma* , 2010, The Journal of Biological Chemistry.

[5]  E. Diamandis,et al.  Kallikrein-related Peptidase-8 (KLK8) Is an Active Serine Protease in Human Epidermis and Sweat and Is Involved in a Skin Barrier Proteolytic Cascade , 2010, The Journal of Biological Chemistry.

[6]  R. Weigert,et al.  Matriptase initiates epidermal prokallikrein activation and disease onset in a mouse model of Netherton syndrome , 2010, Nature Genetics.

[7]  R. Gallo,et al.  Kallikrein expression and cathelicidin processing are independently controlled in keratinocytes by calcium, vitamin D(3), and retinoic acid. , 2010, The Journal of investigative dermatology.

[8]  M. Schmitt,et al.  Interdependence of kallikrein-related peptidases in proteolytic networks , 2010, Biological chemistry.

[9]  M. Fukae,et al.  Cleavage Site Specificity of MMP-20 for Secretory-stage Ameloblastin , 2010, Journal of dental research.

[10]  V. Magdolen,et al.  Analyzing the protease web in skin: meprin metalloproteases are activated specifically by KLK4, 5 and 8 vice versa leading to processing of proKLK7 thereby triggering its activation , 2010, Biological chemistry.

[11]  E. Diamandis,et al.  Functional Roles of Human Kallikrein-related Peptidases* , 2009, The Journal of Biological Chemistry.

[12]  H. Korting,et al.  Tetracycline Actions Relevant to Rosacea Treatment , 2009, Skin Pharmacology and Physiology.

[13]  Wei Xia,et al.  Matrix-degrading metalloproteinases in photoaging. , 2009, The journal of investigative dermatology. Symposium proceedings.

[14]  H. Korting,et al.  Current topical and systemic approaches to treatment of rosacea , 2009, Journal of the European Academy of Dermatology and Venereology : JEADV.

[15]  R. Voegeli,et al.  Increased stratum corneum serine protease activity in acute eczematous atopic skin , 2009, The British journal of dermatology.

[16]  P. Dubus,et al.  Kallikrein 5 induces atopic dermatitis–like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome , 2009, The Journal of experimental medicine.

[17]  A. Di Nardo,et al.  Collagen synthesis is suppressed in dermal fibroblasts by the human antimicrobial peptide LL-37. , 2009, The Journal of investigative dermatology.

[18]  Ph.D. Ulf Meyer-Hoffert MD,et al.  Reddish , scaly , and itchy : how proteases and their inhibitors contribute to inflammatory skin diseases , 2009 .

[19]  Å. Lundwall,et al.  Kallikrein-related peptidases , 2008, Cellular and Molecular Life Sciences.

[20]  J. Schauber,et al.  Cathelicidin LL-37 , 2007, Der Hautarzt.

[21]  I. Mellman,et al.  Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide , 2007, Nature.

[22]  A. Hovnanian,et al.  Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea , 2007, Nature Medicine.

[23]  M. Rendon,et al.  Two randomized phase III clinical trials evaluating anti-inflammatory dose doxycycline (40-mg doxycycline, USP capsules) administered once daily for treatment of rosacea. , 2007, Journal of the American Academy of Dermatology.

[24]  Henry Lin,et al.  The FASEB Journal • Research Communication Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin , 2022 .

[25]  A. Ny,et al.  Kallikrein-related peptidase 14 may be a major contributor to trypsin-like proteolytic activity in human stratum corneum , 2006, Biological chemistry.

[26]  J. Chung,et al.  Inflammation and extracellular matrix degradation mediated by activated transcription factors nuclear factor-kappaB and activator protein-1 in inflammatory acne lesions in vivo. , 2005, The American journal of pathology.

[27]  E. Diamandis,et al.  Biochemical and Enzymatic Characterization of Human Kallikrein 5 (hK5), a Novel Serine Protease Potentially Involved in Cancer Progression* , 2005, Journal of Biological Chemistry.

[28]  A. Ishida-Yamamoto,et al.  LEKTI is localized in lamellar granules, separated from KLK5 and KLK7, and is secreted in the extracellular spaces of the superficial stratum granulosum. , 2005, The Journal of investigative dermatology.

[29]  Virgil L. Woods,et al.  Molecular Interactions between Matrilysin and the Matrix Metalloproteinase Inhibitor Doxycycline Investigated by Deuterium Exchange Mass Spectrometry □ S , 2005 .

[30]  De-Quan Li,et al.  Stimulation of matrix metalloproteinases by hyperosmolarity via a JNK pathway in human corneal epithelial cells. , 2004, Investigative ophthalmology & visual science.

[31]  M. Simon,et al.  Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. , 2004, The Journal of investigative dermatology.

[32]  S. Zahler,et al.  An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. , 2003, The Journal of clinical investigation.

[33]  J. Leyden,et al.  Effects of subantimicrobial-dose doxycycline in the treatment of moderate acne. , 2003, Archives of dermatology.

[34]  Tomas Ganz,et al.  Endogenous antimicrobial peptides and skin infections in atopic dermatitis. , 2002, The New England journal of medicine.

[35]  Y. Yamakoshi,et al.  Porcine kallikrein-4 activation, glycosylation, activity, and expression in prokaryotic and eukaryotic hosts. , 2002, European journal of oral sciences.

[36]  L. Chao,et al.  A synthetic tissue kallikrein inhibitor suppresses cancer cell invasiveness. , 2001, The American journal of pathology.

[37]  Ji Ming Wang,et al.  Ll-37, the Neutrophil Granule–And Epithelial Cell–Derived Cathelicidin, Utilizes Formyl Peptide Receptor–Like 1 (Fprl1) as a Receptor to Chemoattract Human Peripheral Blood Neutrophils, Monocytes, and T Cells , 2000, The Journal of experimental medicine.

[38]  T. Egelrud Desquamation in the stratum corneum. , 2000, Acta dermato-venereologica. Supplementum.

[39]  M. Brattsand,et al.  Purification, Molecular Cloning, and Expression of a Human Stratum Corneum Trypsin-like Serine Protease with Possible Function in Desquamation* , 1999, The Journal of Biological Chemistry.

[40]  T. Salo,et al.  Inhibition of MMP Synthesis by Doxycycline and Chemically Modified Tetracyclines (CMTs) in Human Endothelial Cells , 1998, Advances in dental research.

[41]  W. Giannobile,et al.  Tetracyclines Inhibit Connective Tissue Breakdown by Multiple Non-Antimicrobial Mechanisms , 1998, Advances in dental research.

[42]  V. Kähäri,et al.  Matrix metalloproteinases in skin , 1997, Experimental dermatology.

[43]  D Sorbi,et al.  Doxycycline inhibits neutrophil (PMN)-type matrix metalloproteinases in human adult periodontitis gingiva. , 2005, Journal of clinical periodontology.

[44]  J. Larrick,et al.  Anti-microbial activity of human CAP18 peptides. , 1995, Immunotechnology : an international journal of immunological engineering.

[45]  J. Larrick,et al.  Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein , 1995, Infection and immunity.

[46]  L. Golub,et al.  Doxycycline and Chemically Modified Tetracyclines Inhibit Gelatinase A (MMP‐2) Gene Expression in Human Skin Keratinocytes , 1994, Annals of the New York Academy of Sciences.

[47]  D. M. Ryan,et al.  Concentrations of doxycycline in muscle tissue and muscle tissue fluid. , 1988, Scandinavian journal of infectious diseases. Supplementum.

[48]  P. Ricci,et al.  [Blood and tissue levels of 2 antibiotics of the tetracycline group orally administered to man]. , 1968, Antibiotica.

[49]  N. Kanof,et al.  The Journal of Investigative Dermatology , 1967 .

[50]  A. S. Douglas,et al.  ε-AMINOCAPROIC ACID AND OTHER INHIBITORS OF FIBRINOLYSIS , 1964 .

[51]  A. S. Douglas,et al.  EPSILON-AMINOCAPROIC ACID AND OTHER INHIBITORS OF FIBRINOLYSIS. , 1964, British medical bulletin.