Generalized transition state theory in terms of the potential of mean force

The relationship between the free energy of activation and the potential of mean force is derived for reaction coordinates that are arbitrary functions of all the coordinates defining a system. The general result is illustrated for rectilinear reaction coordinates, bond distance reaction coordinates, atom transfer reaction coordinates, synchronous double atom transfer reaction coordinates, and energy gap reaction coordinates.

[1]  Paolo Carloni,et al.  Key Steps of the cis-Platin-DNA Interaction: Density Functional Theory-Based Molecular Dynamics Simulations , 2000 .

[2]  M. Sprik,et al.  Ab initio molecular dynamics study of the reaction of water with formaldehyde in sulfuric acid solution. , 1998 .

[3]  M. Klein,et al.  Ab Initio Molecular Dynamics Investigation of the Formyl Cation in the Superacid SbF5/HF , 2001 .

[4]  K. Hinsen,et al.  Potential of mean force and reaction rates for proton transfer in acetylacetone , 1997 .

[5]  H. Jónsson,et al.  Reversible work based quantum transition state theory , 1994 .

[6]  J. Hynes,et al.  Molecular dynamics of a modelSN1 reaction in water , 1991 .

[7]  Juro Horiuti,et al.  On the Statistical Mechanical Treatment of the Absolute Rate of Chemical Reaction , 1938 .

[8]  D. Truhlar,et al.  Reaction‐path potential and vibrational frequencies in terms of curvilinear internal coordinates , 1995 .

[9]  D. Case,et al.  Dynamic Simulations of Oxygen Binding to Myoglobin , 1986, Annals of the New York Academy of Sciences.

[10]  W. Briels,et al.  THE CALCULATION OF FREE-ENERGY DIFFERENCES BY CONSTRAINED MOLECULAR-DYNAMICS SIMULATIONS , 1998 .

[11]  P. Dennery,et al.  An introduction to statistical mechanics , 1972 .

[12]  Eugene P. Wigner,et al.  The transition state method , 1938 .

[13]  D. Truhlar,et al.  Canonical variational theory for enzyme kinetics with the protein mean force and multidimensional quantum mechanical tunneling dynamics. Theory and application to liver alcohol dehydrogenase , 2001 .

[14]  Y. Mo,et al.  An ab initio molecular orbital-valence bond (MOVB) method for simulating chemical reactions in solution , 2000 .

[15]  U. Rothlisberger,et al.  Conformational Equilibria of Peroxynitrous Acid in Water: A First-Principles Molecular Dynamics Study , 2000 .

[16]  H. Eyring The theory of absolute reaction rates , 1938 .

[17]  Sean C. Smith Angular‐momentum resolution in transitional‐mode state counting for loose transition states , 1992 .

[18]  Donald G. Truhlar,et al.  The interface of electronic structure and dynamics for reactions in solution , 1998 .

[19]  Imre G. Csizmadia,et al.  New theoretical concepts for understanding organic reactions , 1989 .

[20]  James C. Keck,et al.  Statistical investigation of dissociation cross-sections for diatoms , 1962 .

[21]  F. Jousse,et al.  Adsorption Sites and Diffusion Rates of Benzene in HY Zeolite by Force Field Based Simulations , 2000 .

[22]  W. B. Almeida,et al.  A theoretical ab initio and Monte Carlo simulation study of the pyridine + CCl2 reaction kinetics in the gas phase and in carbon tetrachloride solution using canonical flexible transition state theory , 1999 .

[23]  G. Ciccotti,et al.  Constrained reaction coordinate dynamics for the simulation of rare events , 1989 .

[24]  D. Truhlar,et al.  Inclusion of Quantum Mechanical Vibrational Energy in Reactive Potentials of Mean Force , 2001 .

[25]  J. Brickmann,et al.  XENON DIFFUSION IN ZEOLITE NAY : TRANSITION-STATE THEORY WITH DYNAMICAL CORRECTIONS , 1996 .

[26]  A. Nowick,et al.  Diffusion in solids: recent developments , 1975 .

[27]  J. Hynes,et al.  Molecular Mechanism of HCl Acid Ionization in Water: Ab Initio Potential Energy Surfaces and Monte Carlo Simulations , 1997 .

[28]  B. C. Garrett,et al.  Variational transition state theory for activated chemical reactions in solution , 1994 .

[29]  B. C. Garrett,et al.  Tunneling in the Presence of a Bath: A Generalized Transition State Theory Approach , 1994 .

[30]  D. Truhlar,et al.  Quantum Mechanical Dynamical Effects in an Enzyme-Catalyzed Proton Transfer Reaction , 1999 .

[31]  Bernd Ensing,et al.  Solvation Effects on the SN2 Reaction between CH3Cl and Cl- in Water , 2001 .

[32]  B. C. Garrett,et al.  The role of collective solvent coordinates and nonequilibrium solvation in charge-transfer reactions , 2001 .

[33]  G. Ciccotti,et al.  Dynamics of ion pair interconversion in a polar solvent , 1990 .

[34]  R. Lynden-Bell,et al.  TRANSFER OF A POLLUTANT MOLECULE THROUGH A WATER FILM ON A SINGLE CRYSTAL SURFACE , 1999 .

[35]  R. Marcus,et al.  Unimolecular reaction rate theory for transition states of any looseness. 3. Application to methyl radical recombination , 1986 .

[36]  M. Parrinello,et al.  First principles study of propene polymerization in Ziegler-Natta heterogeneous catalysis , 2000 .

[37]  Michael Baer,et al.  Theory of chemical reaction dynamics , 1985 .

[38]  Donald G. Truhlar,et al.  Multidimensional transition state theory and the validity of Grote-Hynes theory , 2000 .

[39]  H. Schaefer,et al.  Reaction path Hamiltonian: Tunneling effects in the unimolecular isomerization HNC→HCN , 1980 .

[40]  Shankar Kumar,et al.  Multidimensional free‐energy calculations using the weighted histogram analysis method , 1995, J. Comput. Chem..

[41]  A. Curioni,et al.  First-Principles Molecular Dynamics Simulations of H 2 O on α-Al 2 O 3 (0001) , 2000 .

[42]  Keiji Morokuma,et al.  Potential energy characteristics and energy partitioning in chemical reactions: Abinitio MO study of four‐centered elimination reaction CH3CH2F→CH2=CH2+HF , 1980 .

[43]  Michiel Sprik,et al.  Coordination numbers as reaction coordinates in constrained molecular dynamics , 1998 .

[44]  B. C. Garrett,et al.  The definition of reaction coordinates for reaction‐path dynamics , 1991 .

[45]  Eric F Darve,et al.  Calculating free energies using average force , 2001 .

[46]  David Chandler,et al.  Statistical mechanics of isomerization dynamics in liquids and the transition state approximation , 1978 .

[47]  M. Field,et al.  Is There a Covalent Intermediate in the Viral Neuraminidase Reaction? A Hybrid Potential Free-Energy Study , 1999 .

[48]  J. Hynes,et al.  Model molecular dynamics simulation of hydrochloric acid ionization at the surface of stratospheric ice , 1998 .

[49]  G. Voth,et al.  Reactive Flux Calculations of Methyl Vinyl Ketone Reacting with Cyclopentadiene in Water , 1999 .

[50]  M. Sprik Computation of the pK of liquid water using coordination constraints , 2000 .

[51]  A. Pohorille,et al.  Isomerization reaction dynamics and equilibrium at the liquid-vapor interface of water. A molecular-dynamics study. , 1993, The Journal of chemical physics.

[52]  Donald G. Truhlar,et al.  Polyatomic canonical variational theory for chemical reaction rates. Separable‐mode formalism with application to OH+H2→H2O+H , 1982 .

[53]  Donald G. Truhlar,et al.  Criterion of minimum state density in the transition state theory of bimolecular reactions , 1979 .

[54]  M. Parrinello,et al.  Analysis of the Dissociation of H2O in Water Using First-Principles Molecular Dynamics , 1999 .

[55]  William H. Miller,et al.  Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants , 1974 .

[56]  Thomas Mülders,et al.  Distance-type reaction coordinates for modelling activated processes , 2001 .

[57]  E. Carter,et al.  Solute-dependent solvent force constants for ion pairs and neutral pairs in a polar solvent , 1989 .

[58]  John C. Tully,et al.  Molecular dynamics of infrequent events: Thermal desorption of xenon from a platinum surface , 1981 .

[59]  Christoph Dellago,et al.  Kinetic pathways of ion pair dissociation in water , 1999 .

[60]  A. Warshel,et al.  Computer simulation of the initial proton transfer step in human carbonic anhydrase I. , 1992, Journal of molecular biology.

[61]  P. Ordejón,et al.  Ring closure in dioxin formation process: An ab initio molecular dynamics study , 2001 .

[62]  Michiel Sprik,et al.  Free energy from constrained molecular dynamics , 1998 .

[63]  M. Boero,et al.  First principles study of thermal decomposition of alkyl–gallium and tertiary butylarsine , 2000 .

[64]  H. Jónsson,et al.  Optimization of hyperplanar transition states , 2001 .

[65]  A. Warshel,et al.  Evaluation of catalytic free energies in genetically modified proteins. , 1988, Journal of molecular biology.

[66]  Donald G. Truhlar,et al.  Generalized transition state theory calculations for the reactions D+H2 and H+D2 using an accurate potential energy surface: Explanation of the kinetic isotope effect , 1980 .

[67]  E. Neria,et al.  Molecular dynamics of an enzyme reaction: proton transfer in TIM , 1997 .

[68]  P. Agarwal,et al.  Hybrid approach for including electronic and nuclear quantum effects in molecular dynamics simulations of hydrogen transfer reactions in enzymes , 2001 .

[69]  Jiali Gao,et al.  Walden-Inversion-Enforced Transition-State Stabilization in a Protein Tyrosine Phosphatase , 1998 .

[70]  G. Ciccotti,et al.  Molecular dynamics simulation of electron-transfer reactions in solution , 1989 .

[71]  S. Klippenstein A bond length reaction coordinate for unimolecular reactions. II. Microcanonical and canonical implementations with application to the dissociation of NCNO , 1991 .

[72]  Seogjoo J. Jang,et al.  LITHIUM IMPURITY RECOMBINATION IN SOLID PARA-HYDROGEN : A PATH INTEGRAL QUANTUM TRANSITION STATE THEORY STUDY , 1998 .

[73]  Jiali Gao,et al.  Potential of mean force for the isomerization of DMF in aqueous solution: a Monte Carlo QM/MM simulation study , 1993 .