2N qubit “mirror states” for optimal quantum communication

Abstract. We introduce a new genuinely 2N qubit state, known as the “mirror state” with interesting entanglement properties. The well known Bell and the cluster states form a special case of these “mirror states”, for N = 1 and N = 2 respectively. It can be experimentally realized using SWAP and multiply controlled phase shift operations. After establishing the general conditions for a state to be useful for various communicational protocols involving quantum and classical information, it is shown that the present state can optimally implement algorithms for the quantum teleportation of an arbitrary N qubit state and achieve quantum information splitting in all possible ways. With regard to superdense coding, one can send 2N classical bits by sending only N qubits and consuming N ebits of entanglement. Explicit comparison of the mirror state with the rearranged N Bell pairs and the linear cluster states is considered for these quantum protocols. We also show that mirror states are more robust than the rearranged Bell pairs with respect to a certain class of collisional decoherence.

[1]  Zhong-Xiao Man,et al.  Genuine multiqubit entanglement and controlled teleportation , 2007 .

[2]  Guang-Can Guo,et al.  General form of genuine multipartite entanglement quantum channels for teleportation , 2006 .

[3]  Jinhyoung Lee,et al.  Multipartite entanglement for entanglement teleportation , 2002, quant-ph/0201069.

[4]  Mario Ziman,et al.  All (qubit) decoherences: Complete characterization and physical implementation , 2005 .

[5]  Y. Yeo Robustness of multipartite entanglement under collisional decoherence , 2007 .

[6]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[7]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[8]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[9]  G. Rigolin Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement , 2004, quant-ph/0407219.

[10]  R. Srikanth,et al.  Squeezed generalized amplitude damping channel , 2007, 0707.0059.

[11]  Shi-Biao Zheng Splitting quantum information via W states , 2006 .

[12]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[13]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[14]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[15]  Jeong San Kim,et al.  Quantum states for perfectly secure secret sharing , 2008 .

[16]  Y. Zhang,et al.  Detection of the maximally connected state , 2005 .

[17]  M. Lewenstein,et al.  Distributed quantum dense coding. , 2004, Physical review letters.

[18]  M. Bourennane,et al.  Quantum teleportation using three-particle entanglement , 1998 .

[19]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[20]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[21]  S. Stepney,et al.  Searching for highly entangled multi-qubit states , 2005 .

[22]  Anil Kumar,et al.  Implementation of controlled phase shift gates and Collins version of Deutsch-Jozsa algorithm on a quadrupolar spin-7/2 nucleus using non-adiabatic geometric phases. , 2008, Journal of magnetic resonance.

[23]  Mutual information and swap operation in the two-qubit Heisenberg model with Dzyaloshinskii–Moriya anisotropic antisymmetric interaction , 2007, 0808.2694.

[24]  V. N. Gorbachev,et al.  Can the states of the W-class be suitable for teleportation , 2002, quant-ph/0203028.

[25]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[26]  A. Pati,et al.  Perfect teleportation and superdense coding with W states , 2006, quant-ph/0610001.

[27]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[28]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[29]  M. Nielsen Cluster-state quantum computation , 2005, quant-ph/0504097.

[30]  P. Panigrahi,et al.  Quantum-information splitting using multipartite cluster states , 2008, 0802.0781.

[31]  Y. Yeo,et al.  Teleportation and dense coding with genuine multipartite entanglement. , 2005, Physical review letters.

[32]  P. Panigrahi,et al.  Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state , 2007, 0708.3785.

[33]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.