2N qubit “mirror states” for optimal quantum communication
暂无分享,去创建一个
Prasanta K. Panigrahi | R. Srikanth | Sreraman Muralidharan | P. Panigrahi | R. Srikanth | Sakshi Jain | Siddharth Karumanchi | S. Jain | S. Muralidharan | S. Karumanchi
[1] Zhong-Xiao Man,et al. Genuine multiqubit entanglement and controlled teleportation , 2007 .
[2] Guang-Can Guo,et al. General form of genuine multipartite entanglement quantum channels for teleportation , 2006 .
[3] Jinhyoung Lee,et al. Multipartite entanglement for entanglement teleportation , 2002, quant-ph/0201069.
[4] Mario Ziman,et al. All (qubit) decoherences: Complete characterization and physical implementation , 2005 .
[5] Y. Yeo. Robustness of multipartite entanglement under collisional decoherence , 2007 .
[6] V. Buzek,et al. Quantum secret sharing , 1998, quant-ph/9806063.
[7] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[8] W. Wootters,et al. Distributed Entanglement , 1999, quant-ph/9907047.
[9] G. Rigolin. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement , 2004, quant-ph/0407219.
[10] R. Srikanth,et al. Squeezed generalized amplitude damping channel , 2007, 0707.0059.
[11] Shi-Biao Zheng. Splitting quantum information via W states , 2006 .
[12] B. Moor,et al. Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.
[13] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[14] G. Vidal,et al. Computable measure of entanglement , 2001, quant-ph/0102117.
[15] Jeong San Kim,et al. Quantum states for perfectly secure secret sharing , 2008 .
[16] Y. Zhang,et al. Detection of the maximally connected state , 2005 .
[17] M. Lewenstein,et al. Distributed quantum dense coding. , 2004, Physical review letters.
[18] M. Bourennane,et al. Quantum teleportation using three-particle entanglement , 1998 .
[19] R. Cleve,et al. HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.
[20] Charles H. Bennett,et al. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.
[21] S. Stepney,et al. Searching for highly entangled multi-qubit states , 2005 .
[22] Anil Kumar,et al. Implementation of controlled phase shift gates and Collins version of Deutsch-Jozsa algorithm on a quadrupolar spin-7/2 nucleus using non-adiabatic geometric phases. , 2008, Journal of magnetic resonance.
[23] Mutual information and swap operation in the two-qubit Heisenberg model with Dzyaloshinskii–Moriya anisotropic antisymmetric interaction , 2007, 0808.2694.
[24] V. N. Gorbachev,et al. Can the states of the W-class be suitable for teleportation , 2002, quant-ph/0203028.
[25] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[26] A. Pati,et al. Perfect teleportation and superdense coding with W states , 2006, quant-ph/0610001.
[27] H. Briegel,et al. Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.
[28] E. Knill,et al. Theory of quantum error-correcting codes , 1997 .
[29] M. Nielsen. Cluster-state quantum computation , 2005, quant-ph/0504097.
[30] P. Panigrahi,et al. Quantum-information splitting using multipartite cluster states , 2008, 0802.0781.
[31] Y. Yeo,et al. Teleportation and dense coding with genuine multipartite entanglement. , 2005, Physical review letters.
[32] P. Panigrahi,et al. Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state , 2007, 0708.3785.
[33] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.