A Resolvent Approach to Metastability

We provide a necessary and sufficient condition for the metastability of a Markov chain, expressed in terms of a property of the solutions of the resolvent equation. As an application of this result, we prove the metastability of reversible, critical zero-range processes starting from a configuration.

[1]  Antonio Galves,et al.  Metastable behavior of stochastic dynamics: A pathwise approach , 1984 .

[2]  A. Bovier Metastability: A Potential-Theoretic Approach , 2016 .

[3]  N. Berglund Kramers' law: Validity, derivations and generalisations , 2011, 1106.5799.

[4]  F. Bouchet,et al.  Generalisation of the Eyring–Kramers Transition Rate Formula to Irreversible Diffusion Processes , 2015, Annales Henri Poincaré.

[5]  J. Clerk-Maxwell On the Dynamical Evidence of the Molecular Constitution of Bodies , 1875, Nature.

[6]  V. Climenhaga Markov chains and mixing times , 2013 .

[7]  O. Penrose,et al.  Rigorous treatment of metastable states in the van der Waals-Maxwell theory , 1971 .

[8]  C. Landim,et al.  Tunneling and Metastability of Continuous Time Markov Chains II, the Nonreversible Case , 2012, 1205.0445.

[9]  B. Pittel,et al.  Size of the largest cluster under zero-range invariant measures , 2000 .

[10]  Thermalisation for small random perturbations of dynamical systems , 2015, 1510.09207.

[11]  Katie Byl,et al.  Metastable Markov chains , 2014, 53rd IEEE Conference on Decision and Control.

[12]  Metastable Markov chains: from the convergence of the trace to the convergence of the finite-dimensional distributions , 2017, 1703.09481.

[13]  Asymptotics for scaled Kramers–Smoluchowski equations in several dimensions with general potentials , 2018, 1808.09108.

[14]  C. Landim,et al.  Metastability of the Two-Dimensional Blume-Capel Model with Zero Chemical Potential and Small Magnetic Field on a Large Torus , 2018, Journal of Statistical Physics.

[15]  C. Landim,et al.  Metastability of reversible condensed zero range processes on a finite set , 2009, 0910.4089.

[16]  M. Loulakis,et al.  Zero-range condensation at criticality , 2009, 0912.1793.

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  C. Landim,et al.  Tunneling and Metastability of Continuous Time Markov Chains , 2009, 0910.4088.

[19]  Scaling Limit of Small Random Perturbation of Dynamical Systems , 2018, 1812.02069.

[20]  Metastability of one-dimensional, non-reversible diffusions with periodic boundary conditions , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[21]  Metastability of Non-reversible, Mean-Field Potts Model with Three Spins , 2016, 1607.01925.

[22]  Giacomo Di Gesù,et al.  The exit from a metastable state: Concentration of the exit point distribution on the low energy saddle points, part 1 , 2019, Journal de Mathématiques Pures et Appliquées.

[23]  M. Loulakis,et al.  Conditional distribution of heavy tailed random variables on large deviations of their sum , 2009, 0912.1516.

[24]  C. Landim Metastability for a Non-reversible Dynamics: The Evolution of the Condensate in Totally Asymmetric Zero Range Processes , 2012, 1204.5987.

[25]  Condensation in the Zero Range Process: Stationary and Dynamical Properties , 2003, cond-mat/0302079.

[26]  A. Bovier,et al.  Metastability and Low Lying Spectra¶in Reversible Markov Chains , 2000, math/0007160.

[27]  Metastability for parabolic equations with drift: Part II. The quasilinear case , 2015, 1505.02265.

[28]  Alessandra Bianchi,et al.  Metastable states, quasi-stationary distributions and soft measures , 2011, 1103.1143.

[29]  C. Landim,et al.  Metastability of the Two-Dimensional Blume–Capel Model with Zero Chemical Potential and Small Magnetic Field , 2015, 1512.09286.

[30]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[31]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[32]  M. R. Evans Phase transitions in one-dimensional nonequilibrium systems , 2000 .

[33]  Lawrence C. Evans,et al.  Asymptotics for Scaled Kramers-Smoluchowski Equations , 2016, SIAM J. Math. Anal..

[34]  C. Landim,et al.  A Dirichlet principle for non reversible Markov chains and some recurrence theorems , 2011, 1111.2445.

[35]  M. Loulakis,et al.  Metastability in a condensing zero-range process in the thermodynamic limit , 2015, 1507.03797.

[36]  E. Olivieri,et al.  Large deviations and metastability , 2005 .

[37]  C. Landim,et al.  Metastable Behavior of reversible, Critical Zero-Range Processes , 2020 .

[38]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[39]  Seonwoo Kim Second time scale of the metastability of reversible inclusion processes , 2020, Probability Theory and Related Fields.

[40]  I. Seo Condensation of Non-reversible Zero-Range Processes , 2018, Communications in Mathematical Physics.

[41]  Metastability for nonlinear random perturbations of dynamical systems , 2009, 0903.0430.

[42]  Metastability for parabolic equations with drift: Part i , 2013, 1312.5504.

[43]  Nonlinear stochastic perturbations of dynamical systems and quasi-linear parabolic PDE’s with a small parameter , 2009, 0903.0428.