Tailoring drug co-delivery nanosystem for mitigating U-87 stem cells drug resistance

[1]  J. Moffat,et al.  The Rational Development of CD133-Targeting Immunotherapies for Glioblastoma. , 2020, Cell stem cell.

[2]  J. Rossignol,et al.  PAMAM Dendrimer Nanomolecules Utilized as Drug Delivery Systems for Potential Treatment of Glioblastoma: A Systematic Review , 2020, International journal of nanomedicine.

[3]  Amicia D Elliott Confocal Microscopy: Principles and Modern Practices , 2019, Current protocols in cytometry.

[4]  Yunhui Liu,et al.  The necessity for standardization of glioma stem cell culture: a systematic review , 2020, Stem Cell Research & Therapy.

[5]  E. Martín-Orozco,et al.  WNT Signaling in Tumors: The Way to Evade Drugs and Immunity , 2019, Frontiers in Immunology.

[6]  W. Alshaer,et al.  Aptamers Chemistry: Chemical Modifications and Conjugation Strategies , 2019, Molecules.

[7]  V. L. Nayak,et al.  An innovative In-situ method of creating hybrid dendrimer nano-assembly: An efficient next generation dendritic platform for drug delivery. , 2019, Nanomedicine : nanotechnology, biology, and medicine.

[8]  K. Skelding,et al.  Glioblastoma Multiforme: An Overview of Emerging Therapeutic Targets , 2019, Front. Oncol..

[9]  N. Gotoh,et al.  Drug resistance mechanisms of cancer stem-like cells and their therapeutic potential as drug targets , 2019, Cancer drug resistance.

[10]  Kwang-Yu Chang,et al.  Role of autophagy in therapeutic resistance of glioblastoma , 2019, Journal of Cancer Metastasis and Treatment.

[11]  L. Sedger,et al.  Intercellular Vesicular Transfer by Exosomes, Microparticles and Oncosomes - Implications for Cancer Biology and Treatments , 2019, Front. Oncol..

[12]  R. Jani,et al.  Active targeting of nanoparticles: An innovative technology for drug delivery in cancer therapeutics , 2019, Journal of Drug Delivery and Therapeutics.

[13]  G. Liou,et al.  CD133 as a regulator of cancer metastasis through the cancer stem cells. , 2019, The international journal of biochemistry & cell biology.

[14]  Lu He,et al.  Wnt/β‐catenin signaling cascade: A promising target for glioma therapy , 2018, Journal of cellular physiology.

[15]  Syahidah Ahmad,et al.  CD133: beyond a cancer stem cell biomarker , 2018, Journal of drug targeting.

[16]  Azlan Abdul Aziz,et al.  Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles , 2018, Nanoscale Research Letters.

[17]  Syeda Sana Samar,et al.  CD133 Expression in Glioblastoma Multiforme: A Literature Review , 2018, Cureus.

[18]  Jun Wang,et al.  The effect of surface poly(ethylene glycol) length on in vivo drug delivery behaviors of polymeric nanoparticles. , 2018, Biomaterials.

[19]  L. Ricci-Vitiani,et al.  Inhibition of autophagy increases susceptibility of glioblastoma stem cells to temozolomide by igniting ferroptosis , 2018, Cell Death & Disease.

[20]  I. Ulasov,et al.  Autophagy in glioma cells: An identity crisis with a clinical perspective. , 2018, Cancer letters.

[21]  J. Rossi,et al.  Aptamers: Uptake mechanisms and intracellular applications , 2018, Advanced Drug Delivery Reviews.

[22]  Pablo Játiva,et al.  Nanoparticle crossing of blood-brain barrier: a road to new therapeutic approaches to central nervous system diseases. , 2018, Nanomedicine.

[23]  M. R. Mozafari,et al.  Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems , 2018, Pharmaceutics.

[24]  G. Reifenberger,et al.  Inhibition of Wnt/beta-catenin signaling downregulates expression of aldehyde dehydrogenase isoform 3A1 (ALDH3A1) to reduce resistance against temozolomide in glioblastoma in vitro , 2018, Oncotarget.

[25]  Y. Assaraf,et al.  Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles , 2018, Oncotarget.

[26]  A. Chauhan Dendrimers for Drug Delivery , 2018, Molecules.

[27]  S. Gaisford,et al.  Nanoparticle–membrane interactions , 2018 .

[28]  A. Seyfoori,et al.  Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response , 2017, Pharmacology & therapeutics.

[29]  M. Chesler,et al.  Intracellular pH Measurements in Glioblastoma Cells Using the pH-Sensitive Dye BCECF. , 2018, Methods in molecular biology.

[30]  P. West,et al.  A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. , 2017, Ultramicroscopy.

[31]  M. Gilbert,et al.  Targeting WNT Signaling for Multifaceted Glioblastoma Therapy , 2017, Front. Cell. Neurosci..

[32]  W. Duan,et al.  Aptamer-Based Therapeutic Approaches to Target Cancer Stem Cells , 2017, Theranostics.

[33]  Yulun Huang,et al.  Targeting transferrin receptor delivery of temozolomide for a potential glioma stem cell-mediated therapy , 2017, Oncotarget.

[34]  Alaaldin M. Alkilany,et al.  Cellular uptake of nanoparticles: journey inside the cell. , 2017, Chemical Society reviews.

[35]  Ying Sun,et al.  Thermoresponsive nanocomposite gel for local drug delivery to suppress the growth of glioma by inducing autophagy , 2017, Autophagy.

[36]  T. Glaser,et al.  Targeted Nanotechnology in Glioblastoma Multiforme , 2017, Front. Pharmacol..

[37]  Jing Yang,et al.  Pygopus2 inhibits the efficacy of paclitaxel-induced apoptosis and induces multidrug resistance in human glioma cells , 2017, Oncotarget.

[38]  J. Rossignol,et al.  PAMAM Dendrimers Cross the Blood–Brain Barrier When Administered through the Carotid Artery in C57BL/6J Mice , 2017, International journal of molecular sciences.

[39]  A. Morokoff,et al.  Expression of CD133 and CD44 in glioblastoma stem cells correlates with cell proliferation, phenotype stability and intra-tumor heterogeneity , 2017, PloS one.

[40]  Umesh Gupta,et al.  Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. , 2017, Drug discovery today.

[41]  Masakazu Nagamine,et al.  A Novel PEGylation Method for Improving the Pharmacokinetic Properties of Anti-Interleukin-17A RNA Aptamers , 2017, Nucleic acid therapeutics.

[42]  Chooi Yeng Lee,et al.  Strategies of temozolomide in future glioblastoma treatment , 2017, OncoTargets and therapy.

[43]  M. Aghasadeghi,et al.  Smart bomb AS1411 aptamer‐functionalized/PAMAM dendrimer nanocarriers for targeted drug delivery in the treatment of gastric cancer , 2017, Clinical and experimental pharmacology & physiology.

[44]  Wei-Hsiu Liu,et al.  Sox2, a stemness gene, regulates tumor‐initiating and drug‐resistant properties in CD133‐positive glioblastoma stem cells , 2016, Journal of the Chinese Medical Association : JCMA.

[45]  H. Sone,et al.  Effects of PAMAM dendrimers with various surface functional groups and multiple generations on cytotoxicity and neuronal differentiation using human neural progenitor cells. , 2016, The Journal of toxicological sciences.

[46]  R. Dey,et al.  PEGylation in anti-cancer therapy: An overview , 2016 .

[47]  Ying Sun,et al.  The synergic antitumor effects of paclitaxel and temozolomide co-loaded in mPEG-PLGA nanoparticles on glioblastoma cells , 2016, Oncotarget.

[48]  Lunquan Sun,et al.  Targeting autophagy to sensitive glioma to temozolomide treatment , 2016, Journal of experimental & clinical cancer research : CR.

[49]  D. Nam,et al.  WNT signaling in glioblastoma and therapeutic opportunities , 2016, Laboratory Investigation.

[50]  Susan Hua,et al.  Advances and Challenges of Liposome Assisted Drug Delivery , 2015, Front. Pharmacol..

[51]  Masaaki Kai,et al.  DNA Aptamers in the Diagnosis and Treatment of Human Diseases , 2015, Molecules.

[52]  Paul C. Wang,et al.  Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance. , 2015, ACS applied materials & interfaces.

[53]  A. Kouzani,et al.  Superior Performance of Aptamer in Tumor Penetration over Antibody: Implication of Aptamer-Based Theranostics in Solid Tumors , 2015, Theranostics.

[54]  Atique U. Ahmed,et al.  The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence , 2015, Expert review of neurotherapeutics.

[55]  Haibin Xia,et al.  Detection of CD133 expression in U87 glioblastoma cells using a novel anti-CD133 monoclonal antibody. , 2015, Oncology letters.

[56]  A. Morokoff,et al.  Coexpression analysis of CD133 and CD44 identifies Proneural and Mesenchymal subtypes of glioblastoma multiforme , 2015, Oncotarget.

[57]  G. Davidson,et al.  CD44 functions in Wnt signaling by regulating LRP6 localization and activation , 2014, Cell Death and Differentiation.

[58]  Heinz-Bernhard Kraatz,et al.  Polymeric micelles as drug delivery vehicles , 2014 .

[59]  W. Duan,et al.  Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells , 2014, International journal of nanomedicine.

[60]  Keerti Jain,et al.  Dendrimer as nanocarrier for drug delivery , 2014 .

[61]  Penelope V Dalla,et al.  Breast Cancer-Derived Microparticles Display Tissue Selectivity in the Transfer of Resistance Proteins to Cells , 2013, PloS one.

[62]  Xiaoting Zhang,et al.  RNA aptamers and their therapeutic and diagnostic applications. , 2013, International journal of biochemistry and molecular biology.

[63]  Tao Wang,et al.  RNA aptamers targeting cancer stem cell marker CD133. , 2013, Cancer letters.

[64]  Xiaoyong Fan,et al.  Biodegradable Implants Efficiently Deliver Combination of Paclitaxel and Temozolomide to Glioma C6 Cancer Cells In Vitro , 2013, Annals of Biomedical Engineering.

[65]  Eleonore Fröhlich,et al.  The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles , 2012, International journal of nanomedicine.

[66]  O. Scherman,et al.  Enhanced stability and activity of temozolomide in primary glioblastoma multiforme cells with cucurbit[n]uril. , 2012, Chemical communications.

[67]  Liangfang Zhang,et al.  Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. , 2012, Biochemical pharmacology.

[68]  Wei Zhang,et al.  Charge shielding effects on gene delivery of polyethylenimine/DNA complexes: PEGylation and phospholipid coating , 2012, Journal of Materials Science: Materials in Medicine.

[69]  Britta A. M. Bouwman,et al.  Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled , 2012, Proceedings of the National Academy of Sciences.

[70]  L. Medina,et al.  β-Catenin Signalling in Glioblastoma Multiforme and Glioma-Initiating Cells , 2012, Chemotherapy research and practice.

[71]  G. Basso,et al.  The Three-Layer Concentric Model of Glioblastoma: Cancer Stem Cells, Microenvironmental Regulation, and Therapeutic Implications , 2011, TheScientificWorldJournal.

[72]  W. Fan,et al.  Second-generation aptamer-conjugated PSMA-targeted delivery system for prostate cancer therapy , 2011, International journal of nanomedicine.

[73]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[74]  Cui Tang,et al.  Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. , 2010, Biomaterials.

[75]  Sudha Kumari,et al.  Endocytosis unplugged: multiple ways to enter the cell , 2010, Cell Research.

[76]  Chen Jiang,et al.  Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. , 2009, Biomaterials.

[77]  T. Yawata,et al.  Enhanced MDR1 Expression and Chemoresistance of Cancer Stem Cells Derived from Glioblastoma , 2009, Cancer investigation.

[78]  Chi-Hwa Wang,et al.  Chemotherapeutic drug transport to brain tumor. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[79]  D. Tomalia,et al.  Unexpected in vivo anti-inflammatory activity observed for simple, surface functionalized poly(amidoamine) dendrimers. , 2009, Biomacromolecules.

[80]  X. Bian,et al.  Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. , 2008, Cancer letters.

[81]  R. Arceci,et al.  Wilms tumor suppressor WTX negatively regulates WNT/β-catenin signaling , 2008 .

[82]  D. Wion,et al.  Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. , 2007, Cancer letters.

[83]  K. Black,et al.  Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma , 2006, Molecular Cancer.

[84]  G. Barger,et al.  In vitro Drug Response and Molecular Markers Associated with Drug Resistance in Malignant Gliomas , 2006, Clinical Cancer Research.

[85]  G. Collins The next generation. , 2006, Scientific American.

[86]  A. Boddy,et al.  Phase I study of temozolomide plus paclitaxel in patients with advanced malignant melanoma and associated in vitro investigations , 2005, British Journal of Cancer.

[87]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[88]  Cynthia Hawkins,et al.  Identification of a cancer stem cell in human brain tumors. , 2003, Cancer research.

[89]  L. Grochow,et al.  Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. , 1999, Clinical cancer research : an official journal of the American Association for Cancer Research.

[90]  W. Saltzman,et al.  Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. , 1998, Cancer research.

[91]  Thomas D. Schmittgen,et al.  Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 2 DD C T Method , 2022 .

[92]  Haibin Xia,et al.  Detection of CD 133 expression in U 87 glioblastoma cells using a novel anti-CD 133 monoclonal antibody , 2022 .