Stable and Informative Spectral Signatures for Graph Matching

In this paper, we consider the approximate weighted graph matching problem and introduce stable and informative first and second order compatibility terms suitable for inclusion into the popular integer quadratic program formulation. Our approach relies on a rigorous analysis of stability of spectral signatures based on the graph Laplacian. In the case of the first order term, we derive an objective function that measures both the stability and informativeness of a given spectral signature. By optimizing this objective, we design new spectral node signatures tuned to a specific graph to be matched. We also introduce the pairwise heat kernel distance as a stable second order compatibility term, we justify its plausibility by showing that in a certain limiting case it converges to the classical adjacency matrix-based second order compatibility function. We have tested our approach on a set of synthetic graphs, the widely-used CMU house sequence, and a set of real images. These experiments show the superior performance of our first and second order compatibility terms as compared with the commonly used ones.

[1]  Yosi Keller,et al.  A Probabilistic Approach to Spectral Graph Matching , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Martial Hebert,et al.  An Integer Projected Fixed Point Method for Graph Matching and MAP Inference , 2009, NIPS.

[3]  Ping Zhu,et al.  A study of graph spectra for comparing graphs and trees , 2008, Pattern Recognit..

[4]  Edwin R. Hancock,et al.  Graph matching using the interference of continuous-time quantum walks , 2009, Pattern Recognit..

[5]  Hwann-Tzong Chen,et al.  Multi-object tracking using dynamical graph matching , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[6]  Peter F. Stadler,et al.  Laplacian Eigenvectors of Graphs , 2007 .

[7]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[8]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[9]  Yosi Keller,et al.  Efficient High Order Matching , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Minsu Cho,et al.  Hyper-graph matching via reweighted random walks , 2011, CVPR 2011.

[11]  Minsu Cho,et al.  Reweighted Random Walks for Graph Matching , 2010, ECCV.

[12]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[13]  Tariq S. Durrani,et al.  A RKHS Interpolator-Based Graph Matching Algorithm , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Steven Gold,et al.  A Graduated Assignment Algorithm for Graph Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[16]  A. Bronstein,et al.  Learning Spectral Descriptors for Deformable Shape Correspondence , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Christoph Schnörr,et al.  Probabilistic Subgraph Matching Based on Convex Relaxation , 2005, EMMCVPR.

[18]  Amnon Shashua,et al.  Probabilistic graph and hypergraph matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Guoxing Zhao,et al.  Using Eigen-Decomposition Method for Weighted Graph Matching , 2007, ICIC.

[20]  King-Sun Fu,et al.  A graph distance measure for image analysis , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[21]  Salvatore Tabbone,et al.  Graph Matching Based on Node Signatures , 2009, GbRPR.

[22]  Fernando De la Torre,et al.  Factorized Graph Matching , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  M. Zaslavskiy,et al.  A Path Following Algorithm for the Graph Matching Problem , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Leonidas J. Guibas,et al.  Graph Matching with Anchor Nodes: A Learning Approach , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Jan van den Heuvel,et al.  Using Laplacian Eigenvalues and Eigenvectors in the Analysis of Frequency Assignment Problems , 2001, Ann. Oper. Res..

[26]  Leonidas J. Guibas,et al.  Spectral Descriptors for Graph Matching , 2013, ArXiv.

[27]  Ali Shokoufandeh,et al.  A Unified Framework for Indexing and Matching Hierarchical Shape Structures , 2001, IWVF.

[28]  Jianbo Shi,et al.  Balanced Graph Matching , 2006, NIPS.

[29]  Edwin R. Hancock,et al.  Structural Graph Matching Using the EM Algorithm and Singular Value Decomposition , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[31]  William Kahan,et al.  Some new bounds on perturbation of subspaces , 1969 .

[32]  J. Leydold,et al.  Laplacian eigenvectors of graphs : Perron-Frobenius and Faber-Krahn type theorems , 2007 .

[33]  Edwin R. Hancock,et al.  Graph matching and clustering using spectral partitions , 2006, Pattern Recognit..

[34]  Pak Chung Wong,et al.  Graph Signatures for Visual Analytics , 2006, IEEE Transactions on Visualization and Computer Graphics.

[35]  Jean Ponce,et al.  A tensor-based algorithm for high-order graph matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Emilio Maggio,et al.  Multi-feature Graph-Based Object Tracking , 2006, CLEAR.

[37]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Pierre Vandergheynst,et al.  Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.

[39]  Marco Gori,et al.  Exact and approximate graph matching using random walks , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Barend J. van Wyk,et al.  A POCS-Based Graph Matching Algorithm , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Alexander M. Bronstein,et al.  Deformable Shape Retrieval by Learning Diffusion Kernels , 2011, SSVM.

[42]  Edwin R. Hancock,et al.  String Edit Distance, Random Walks And Graph Matching , 2004, Int. J. Pattern Recognit. Artif. Intell..

[43]  Edwin R. Hancock,et al.  Learning Structural Variations in Shock Trees , 2002, SSPR/SPR.

[44]  Antonio Robles-Kelly,et al.  String Edit Distance, Random Walks And Graph Matching , 2002, Int. J. Pattern Recognit. Artif. Intell..

[45]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[46]  Ali Shokoufandeh,et al.  Applications of Bipartite Matching to Problems in Object Recognition , 2009 .