Nonlinear model-based control of the Czochralski process II: Reconstruction of crystal radius and growth rate from the weighing signal

In this contribution a nonlinear observer for reconstruction of not directly measured quantities in Czochralski and liquid encapsulated Czochralski crystal growth is derived. The observer can be used in control systems which require knowledge of the crystal radius, of the crystal slope angle, and of the crystal growth rate. Using a nonlinear lumped parameter model these quantities are reconstructed from the weight gain signal which is usually available in growth plants. In contrast to existing solutions found in the literature the nonlinear observer can be used throughout the whole process, especially when growing the conical parts in which the dynamics of the process is changing heavily. The capability of the observer as well as thorough investigations regarding its robustness are illustrated using simulations and experimental results.

[1]  Simon Brandon,et al.  Revisiting the constant growth angle: Estimation and verification via rigorous thermal modeling , 2008 .

[2]  Joachim Rudolph,et al.  Local tracking observers for flat systems , 1996 .

[3]  A. S. Jordan,et al.  An analysis of the derivative weight-gain signal from measured crystal shape: Implications for diameter control of GaAs , 1983, The Bell System Technical Journal.

[4]  Michael Gevelber,et al.  Dynamics and control of the Czochralski process III. Interface dynamics and control requirements , 1994 .

[5]  V. Bakovets,et al.  Growth and wetting angles as the control parameters of crystal shape in Czochralski method , 1998 .

[7]  M. Healey,et al.  Developments in the weighing method of automatic crystal pulling , 1974 .

[8]  T. Johansen,et al.  On the theory of the weighing method for automatic crystal shape control in czochralski growth , 1987 .

[9]  G. W. Green,et al.  The meniscus in Czochralski growth , 1974 .

[10]  T. Johansen,et al.  The weight gain signal in Czochralski crystal growth , 1992 .

[11]  T. Johansen,et al.  The weight gain signal in LEC crystal growth , 1992 .

[12]  Maurizio Masi,et al.  Transient dynamics and control of indium phosphide LEC furnaces , 2000 .

[13]  G. W. Green,et al.  Automatic control of Czochralski crystal growth , 1972 .

[14]  G. Stephanopoulos,et al.  Dynamics and control of the Czochralski process: I. Modelling and dynamic characterization , 1987 .

[15]  N. Abrosimovi Automated control of Czochralski and shaped crystal growth processes using weighing techniques , 2003 .

[16]  R. G. Seidensticker,et al.  The basis of automatic diameter control utilizing ``bright ring'' meniscus reflections , 1975 .

[17]  G. A Satunkin,et al.  Mathematical modelling and control system design of Czochralski and liquid encapsulated Czochralski processes: the basic low order mathematical model , 1995 .

[18]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .

[19]  A. G. Leonov,et al.  Weighing control of the automatic crystallization process from the melt , 1990 .

[20]  U. Gross,et al.  Automatic crystal pulling with optical diameter control using a laser beam , 1972 .

[21]  E. Kubota Analyses of Crystal Shape Monitoring of LEC‐Grown InP Crystals by using a Disc Approximation Approach , 1999 .

[22]  T. Surek,et al.  The growth of shaped crystals from the melt , 1980 .

[23]  V. N. Kurlov,et al.  Servo-controlled crystal growth by the Czochralski method estimating the state vector of the controlled object , 1992 .

[24]  M. Grae Worster,et al.  The case for a dynamic contact angle in containerless solidification , 1996 .

[25]  G. C. Joyce,et al.  The weighing method of automatic Czochralski crystal growth: I. Basic theory , 1977 .

[26]  M. Fliess,et al.  Corps de Hardy et observateurs asymptotiques locaux pour systèmes différentiellement plats , 1997 .

[27]  Jan Winkler,et al.  Nonlinear model-based control of the Czochralski process I: Motivation, modeling and feedback controller design , 2010 .

[28]  Peter Rudolph,et al.  Defect distribution in boron-reduced GaAs crystals grown by vapour-pressure-controlled Czochralski technique , 2008 .

[29]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[30]  T. Johansen,et al.  Analysis of the crystal weighing method applied to liquid encapsulated Czochralski growth , 1987 .

[31]  Douglas P. Looze,et al.  MODELING AND IDENTIFICATION OF THE LIQUID ENCAPSULATED CZOCHRALSKI GAAS PROCESS FOR CONTROL , 1995 .