Computing the Center of Uncertain Points on Tree Networks

Uncertain data has been very common in many applications. In this paper, we consider the one-center problem for uncertain data on tree networks. In this problem, we are given a tree T and n (weighted) uncertain points each of which has m possible locations on T associated with probabilities. The goal is to find a point $$x^*$$x∗ on T such that the maximum (weighted) expected distance from $$x^*$$x∗ to all uncertain points is minimized. To the best of our knowledge, this problem has not been studied before. We propose a refined prune-and-search technique that solves the problem in linear time.

[1]  Subhash Suri,et al.  On the Most Likely Voronoi Diagramand Nearest Neighbor Searching , 2014, ISAAC.

[2]  Timothy M. Chan,et al.  Closest Pair and the Post Office Problem for Stochastic Points , 2011, WADS.

[3]  Michael A. Bender,et al.  The LCA Problem Revisited , 2000, LATIN.

[4]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. I: The p-Centers , 1979 .

[5]  I. Averbakh,et al.  Minimax regret p-center location on a network with demand uncertainty , 1997 .

[6]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[7]  Sergey Bereg,et al.  Facility location problems with uncertainty on the plane , 2005, Discret. Optim..

[8]  Yufei Tao,et al.  Indexing uncertain data , 2009, PODS.

[9]  Greg N. Frederickson,et al.  Parametric Search and Locating Supply Centers in Trees , 1991, WADS.

[10]  Pankaj K. Agarwal,et al.  Convex Hulls Under Uncertainty , 2016, Algorithmica.

[11]  Maarten Löffler,et al.  Geometric Computations on Indecisive Points , 2011, WADS.

[12]  Haitao Wang Minmax regret 1-facility location on uncertain path networks , 2014, Eur. J. Oper. Res..

[13]  Yufei Tao,et al.  Range search on multidimensional uncertain data , 2007, TODS.

[14]  Alon Y. Halevy,et al.  Data integration with uncertainty , 2007, The VLDB Journal.

[15]  Chan-Su Shin,et al.  The Aligned k-Center Problem , 2011, Int. J. Comput. Geom. Appl..

[16]  Haitao Wang,et al.  Line-Constrained k -Median, k -Means, and k -Center Problems in the Plane , 2014, ISAAC.

[17]  Haitao Wang,et al.  One-Dimensional k-Center on Uncertain Data , 2014, COCOON.

[18]  Nimrod Megiddo,et al.  Linear-Time Algorithms for Linear Programming in R^3 and Related Problems , 1982, FOCS.

[19]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .

[20]  Jeffrey Scott Vitter,et al.  Efficient Indexing Methods for Probabilistic Threshold Queries over Uncertain Data , 2004, VLDB.

[21]  Sandip Das,et al.  Some variations on constrained minimum enclosing circle problem , 2013, J. Comb. Optim..

[22]  Bettina Speckmann,et al.  Kinetic 2-centers in the black-box model , 2013, SoCG '13.

[23]  Jian Li,et al.  Efficient Algorithms for One-Dimensional k-Center Problems , 2013, ArXiv.

[24]  Nimrod Megiddo,et al.  An O(n log n) Randomizing Algorithm for the Weighted Euclidean 1-Center Problem , 1986, J. Algorithms.

[25]  Subhash Suri,et al.  On the Most Likely Voronoi Diagram and Nearest Neighbor Searching , 2016, Int. J. Comput. Geom. Appl..

[26]  Xike Xie,et al.  Cleaning uncertain data with quality guarantees , 2008, Proc. VLDB Endow..

[27]  Yufei Tao,et al.  Efficient Evaluation of Probabilistic Advanced Spatial Queries on Existentially Uncertain Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[28]  Pankaj K. Agarwal,et al.  Nearest-neighbor searching under uncertainty , 2012, PODS.

[29]  Binay K. Bhattacharya,et al.  Optimal Algorithms for the Weighted p -Center Problems on the Real Line for Small p , 2007, WADS.

[30]  Nimrod Megiddo,et al.  On the Complexity of Some Common Geometric Location Problems , 1984, SIAM J. Comput..

[31]  Subhash Suri,et al.  On the Most Likely Convex Hull of Uncertain Points , 2013, ESA.

[32]  N. Megiddo Linear-time algorithms for linear programming in R3 and related problems , 1982, FOCS 1982.

[33]  Abdelaziz Foul,et al.  A 1-center problem on the plane with uniformly distributed demand points , 2006, Oper. Res. Lett..

[34]  Nimrod Megiddo,et al.  New Results on the Complexity of p-Center Problems , 1983, SIAM J. Comput..

[35]  Maarten Löffler,et al.  Largest Bounding Box, Smallest Diameter, and Related Problems on Imprecise Points , 2007, WADS.

[36]  Richard Cokt Slowing Down Sorting Networks to Obtain Faster Sorting Algorithms , 1984 .

[37]  Nimrod Megiddo,et al.  An O(n log2 n) Algorithm for the k-th Longest Path in a Tree with Applications to Location Problems , 1981, SIAM J. Comput..

[38]  Timothy M. Chan,et al.  Stochastic minimum spanning trees in euclidean spaces , 2011, SoCG '11.