HM3alD: Polymorphic Malware Detection Using Program Behavior-Aware Hidden Markov Model

[1]  Stefan Katzenbeisser,et al.  Protecting Software through Obfuscation , 2016, ACM Comput. Surv..

[2]  Guofei Gu,et al.  EFFORT: A new host-network cooperated framework for efficient and effective bot malware detection , 2013, Comput. Networks.

[3]  Fabio Roli,et al.  Intrusion detection in computer networks by a modular ensemble of one-class classifiers , 2008, Inf. Fusion.

[4]  Yibin Zhang,et al.  A fast malware detection algorithm based on objective-oriented association mining , 2013, Comput. Secur..

[5]  Danny Hendler,et al.  Scalable Detection of Server-Side Polymorphic Malware , 2018, Knowl. Based Syst..

[6]  Mattia Monga,et al.  Code Normalization for Self-Mutating Malware , 2007, IEEE Security & Privacy.

[7]  Fei Wang,et al.  ENDMal: An anti-obfuscation and collaborative malware detection system using syscall sequences , 2013, Math. Comput. Model..

[8]  Eul Gyu Im,et al.  Malware categorization using dynamic mnemonic frequency analysis with redundancy filtering , 2014, Digit. Investig..

[9]  Eric Filiol,et al.  Dueling hidden Markov models for virus analysis , 2015, Journal of Computer Virology and Hacking Techniques.

[10]  R. Nigel Horspool,et al.  A framework for metamorphic malware analysis and real-time detection , 2015, Comput. Secur..

[11]  David Brumley,et al.  SplitScreen: Enabling efficient, distributed malware detection , 2010, Journal of Communications and Networks.

[12]  Lotfi Ben Romdhane,et al.  Minimal contrast frequent pattern mining for malware detection , 2016, Comput. Secur..

[13]  Mark Stamp,et al.  Deriving common malware behavior through graph clustering , 2013, Comput. Secur..

[14]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[15]  Stefano Zanero,et al.  Detecting Intrusions through System Call Sequence and Argument Analysis , 2010, IEEE Transactions on Dependable and Secure Computing.

[16]  Ashkan Sami,et al.  MAAR: Robust features to detect malicious activity based on API calls, their arguments and return values , 2017, Eng. Appl. Artif. Intell..

[17]  Bazara I. A. Barry,et al.  Enhancing the Detection of Metamorphic Malware using Call Graphs , 2015 .

[18]  Fionn Murtagh,et al.  A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..

[19]  Christopher Krügel,et al.  A survey on automated dynamic malware-analysis techniques and tools , 2012, CSUR.

[20]  Li Yujian,et al.  A Normalized Levenshtein Distance Metric , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Wei Zhang,et al.  Semantics-Based Online Malware Detection: Towards Efficient Real-Time Protection Against Malware , 2016, IEEE Transactions on Information Forensics and Security.

[22]  Sheng Chen,et al.  A malware detection method based on family behavior graph , 2018, Comput. Secur..

[23]  Tomás Pevný,et al.  Learning combination of anomaly detectors for security domain , 2016, Comput. Networks.

[24]  Somesh Jha,et al.  A semantics-based approach to malware detection , 2008, TOPL.

[25]  Muddassar Farooq,et al.  In-execution dynamic malware analysis and detection by mining information in process control blocks of Linux OS , 2013, Inf. Sci..

[26]  Mark Stamp,et al.  Hunting for metamorphic engines , 2006, Journal in Computer Virology.