KKT conditions satisfied using adaptive neighboring in hybrid cellular automata for topology optimization
暂无分享,去创建一个
John E. Renaud | Layne T. Watson | Andres Tovar | Charles L. Penninger | L. Watson | J. Renaud | A. Tovar
[1] Layne T. Watson,et al. Structural Design Using Cellular Automata , 2001 .
[2] John E. Renaud,et al. Compliant Mechanism Design using the Hybrid Cellular Automaton Method , 2005 .
[3] H. Grootenboer,et al. Adaptive bone-remodeling theory applied to prosthetic-design analysis. , 1987, Journal of biomechanics.
[4] J. Petersson,et al. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .
[5] John E. Renaud,et al. Topology Optimization Using a Hybrid Cellular Automaton Method With Local Control Rules , 2006 .
[6] Andres Tovar,et al. Bone Remodeling as a Hybrid Cellular Automaton Optimization Process , 2004 .
[7] John E. Renaud,et al. Crashworthiness Design Using Topology Optimization , 2009 .
[8] Rik Huiskes,et al. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone , 2000, Nature.
[9] Yi Min Xie,et al. Evolutionary Structural Optimization , 1997 .
[10] John E. Renaud,et al. Convergence analysis of hybrid cellular automata for topology optimization , 2010 .
[11] Prabhat Hajela,et al. On the use of energy minimization for CA based analysis in elasticity , 2001 .
[12] M. Bendsøe. Optimal shape design as a material distribution problem , 1989 .
[13] Andres Tovar,et al. Optimización topológica con la técnica de los autómatas celulares híbridos , 2005 .
[14] Zafer Gürdal,et al. Cellular Automata Paradigm for Topology Optimisation , 2006 .
[15] D. Carter,et al. A unifying principle relating stress to trabecular bone morphology , 1986, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.
[16] J. Currey. The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone. , 1988, Journal of biomechanics.
[17] R Huiskes,et al. A theoretical framework for strain-related trabecular bone maintenance and adaptation. , 2005, Journal of biomechanics.
[18] J. Renaud,et al. Optimality Conditions of the Hybrid Cellular Automata for Structural Optimization , 2007 .
[19] O. Sigmund,et al. Checkerboard patterns in layout optimization , 1995 .
[20] A. Folkesson. Analysis of numerical methods , 2011 .
[21] Norio Inou,et al. Self-Organization of Mechanical Structure by Cellular Automata , 1997 .
[22] John E. Renaud,et al. TOPOLOGY OPTIMIZATION WITH STRESS AND DISPLACEMENT CONSTRAINTS USING THE HYBRID CELLULAR AUTOMATON METHOD , 2006 .
[23] George I. N. Rozvany,et al. A critical review of established methods of structural topology optimization , 2009 .
[24] K. Svanberg. The method of moving asymptotes—a new method for structural optimization , 1987 .
[25] M. Bendsøe,et al. Generating optimal topologies in structural design using a homogenization method , 1988 .