Augmented induction of tumor-specific resistance by priming with Mycobacterium tuberculosis (TBC) and subsequent immunization with PPD-coupled syngeneic tumor cells.

The present study investigates the augmenting effect of tuberculin- (PPD) reactive amplifier T cells on the induction of syngeneic tumor immunity. PPD-reactive helper (amplifier) T cell activity was generated in C3H/HeJ mice by appropriate immunization with heat-killed Mycobacterium (Tbc). Immunization of these Tbc-primed mice with PPD-coupled syngeneic X5563 tumor cells led to augmented generation of in vivo tumor-neutralizing activity contingent on the presence of PPD-reactive amplifier T cell activity. Splenic T cells from these mice exhibited potent tumor-neutralizing activity using Winn's assay, whereas spleen cells from mice not primed with Tbc before PPD-X5563 immunization failed to neutralize viable X5563 tumor cells. After establishing that the neutralizing activity was tumor specific and mediated by T cells, the applicability of this augmentation of tumor-specific immunity to an immunotherapy model was explored. Immunization with PPD-X5563 in the early stages of the tumor-bearing state induced potent anti-tumor activity sufficient to reject the growing tumor. Pretreatment of mice with cyclophosphamide or light x-irradiation (250 R), procedures that eliminate suppressor cell activity nonspecifically, before priming with Tbc further potentiated the anti-tumor activity under these conditions. Thus, the present study elucidates the augmenting effect of PPD-reactive amplifier T cells in the induction of tumor-specific immunity and provides an effective method of immunotherapy in tumor-bearing animals.