An Augmented Lagrangian Approach to Linearized Problems in Hydrodynamic Stability

The solution of linear systems arising from the linear stability analysis of solutions of the Navier-Stokes equations is considered. Due to indefiniteness of the submatrix corresponding to the velocities, these systems pose a serious challenge for iterative solution methods. In this paper, the augmented Lagrangian-based block triangular preconditioner introduced by the authors in [SIAM J. Sci. Comput., 28 (2006), pp. 2095-2113] is extended to this class of problems. We prove eigenvalue estimates for the velocity submatrix and deduce several representations of the Schur complement operator which are relevant to numerical properties of the augmented system. Numerical experiments on several model problems demonstrate the effectiveness and robustness of the preconditioner over a wide range of problem parameters.

[1]  Joachim Schöberl,et al.  Multigrid methods for a parameter dependent problem in primal variables , 1999, Numerische Mathematik.

[2]  Anne E. Trefethen,et al.  Spectra and pseudospectra for pipe Poiseuille flow , 1999 .

[3]  H. Elman,et al.  Preconditioning Techniques for Newton's Method for the Incompressible Navier–Stokes Equations , 2003 .

[4]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[5]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[6]  J. Tinsley Oden,et al.  Stability of some mixed finite element methods for Stokesian flows , 1984 .

[7]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[8]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[9]  Anne E. Trefethen,et al.  Hydrodynamic Stability Without Eigenvalues , 1993, Science.

[10]  J. Cahouet,et al.  Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .

[11]  D. Malkus Eigenproblems associated with the discrete LBB condition for incompressible finite elements , 1981 .

[12]  L. Trefethen Spectra and pseudospectra , 2005 .

[13]  Dan S. Henningson,et al.  Pseudospectra of the Orr-Sommerfeld Operator , 1993, SIAM J. Appl. Math..

[14]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[15]  V. Girault,et al.  Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in ³ , 1988 .

[16]  M. A. Ol’shanskǐı On the Stokes problem with model boundary conditions , 1997 .

[17]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[18]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[19]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[20]  M. Bercovier Perturbation of mixed variational problems. Application to mixed finite element methods , 1978 .

[21]  Andrew J. Wathen,et al.  A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..

[22]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[23]  Jia Liu,et al.  Block preconditioning for saddle point systems with indefinite (1, 1) block , 2007, Int. J. Comput. Math..

[24]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[25]  A. Spence,et al.  Eigenvalues of Block Matrices Arising from Problems in Fluid Mechanics , 1994, SIAM J. Matrix Anal. Appl..

[26]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[27]  Dianne P. O'Leary,et al.  A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..

[28]  Maxim A. Olshanskii,et al.  Pressure Schur Complement Preconditioners for the Discrete Oseen Problem , 2007, SIAM J. Sci. Comput..