Resonant coupling from photonic crystal surfaces to plasmonic nanoantennas: principles, detection instruments, and applications in digital resolution biosensing

Coupling of electromagnetic energy from macroscale external light sources to nanometer-scale volumes associated with plasmonic and dielectric nanoantennas is utilized for excitation of Raman scattering on nanoparticles, excitation of semiconductor quantum dots, and resonant optical absorption. These phenomena are used in the context of detection of biomolecules for applications that include disease diagnostics from single-droplet test samples derived from bodily fluids.

[1]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light - Second Edition , 2008 .

[2]  Shanhui Fan,et al.  Analysis of guided resonances in photonic crystal slabs , 2002 .

[3]  Harald Giessen,et al.  Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas. , 2017, Chemical reviews.

[4]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[5]  Brian T. Cunningham,et al.  Recent Advances in Biosensing With Photonic Crystal Surfaces: A Review , 2016, IEEE Sensors Journal.

[6]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[7]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[8]  Wei Zhou,et al.  Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. , 2011, Nature nanotechnology.

[9]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[10]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[11]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[12]  M. Orrit,et al.  Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. , 2012, Nature nanotechnology.

[13]  Yue Zhuo,et al.  Single nanoparticle detection using photonic crystal enhanced microscopy. , 2014, The Analyst.

[14]  Weili Chen,et al.  Protein-protein binding detection with nanoparticle photonic crystal enhanced microscopy (NP-PCEM) , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[15]  Melik C. Demirel,et al.  Nanoparticle-based protein detection by optical shift of a resonant microcavity , 2002, 1108.2337.

[16]  Francesco De Angelis,et al.  A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. , 2008, Nano letters.

[17]  H. Doeleman,et al.  Antenna-cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth , 2016, 1605.04181.

[18]  Erik H. Horak,et al.  Optical microresonators as single-particle absorption spectrometers , 2016, Nature Photonics.

[19]  John A Rogers,et al.  Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. , 2011, Nature communications.

[20]  S. Maier,et al.  Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability , 2012, Nature Communications.

[21]  Brian T. Cunningham,et al.  Label-Free Biosensor Imaging on Photonic Crystal Surfaces , 2015, Sensors.

[22]  E. Schonbrun,et al.  Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays , 2008 .

[23]  B. Cunningham,et al.  Nanoantenna-microcavity hybrid resonators with highly cooperative plasmonic-photonic coupling , 2017, 2017 IEEE Photonics Conference (IPC) Part II.

[24]  Matthew Pelton,et al.  Modified spontaneous emission in nanophotonic structures , 2015, Nature Photonics.

[25]  B. Reinhard,et al.  Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules. , 2012, ACS nano.

[26]  Oliver Benson,et al.  Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. , 2010, Nano letters.

[27]  L. Novotný,et al.  Antennas for light , 2011 .

[28]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[29]  K. Vahala Optical microcavities , 2003, Nature.

[30]  Xiao Yang,et al.  Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). , 2015, Nano letters.

[31]  K. Crozier,et al.  Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies. , 2010, ACS nano.

[32]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[33]  Ming C. Wu,et al.  Radiation engineering of optical antennas for maximum field enhancement. , 2011, Nano letters.

[34]  David L. Kaplan,et al.  Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays , 2009, Proceedings of the National Academy of Sciences.