Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial

We present the design of a polarization-independent tunable absorbing metamaterial (MM) in the mid-infrared wavelength regime. Our structure is composed of an array of thin gold (Au) squares separated from a continuous Au film by a phase-change material (PCM) layer. It is shown that a 10% tuning of the absorbance peak can be obtained by switching the PCM between its amorphous and crystalline states. The strong absorbance shows a substantial overlap between TE and TM polarization states over a wide range of incident angles. The electric field, magnetic field, and current distributions in the absorber are investigated to further explain the physical origin of the absorption. The study provides a path toward the realization of tunable absorbers for applications, such as selective thermal emitters, sensors, and bolometers.

[1]  Costas M. Soukoulis,et al.  Wide-angle perfect absorber/thermal emitter in the terahertz regime , 2008, 0807.2479.

[2]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[3]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[4]  J. Pendry,et al.  Low frequency plasmons in thin-wire structures , 1998 .

[5]  M. Premaratne,et al.  Configurable metamaterial absorber with pseudo wideband spectrum. , 2012, Optics express.

[6]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[7]  N. Zheludev,et al.  Phase-change chalcogenide glass metamaterial , 2009, 0912.4288.

[8]  Iam-Choon Khoo,et al.  Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. , 2011, Optics express.

[9]  Richard Soref,et al.  Wideband perfect light absorber at midwave infrared using multiplexed metal structures. , 2012, Optics letters.

[10]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[11]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[12]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[13]  Gennady Shvets,et al.  Design of metamaterial surfaces with broadband absorbance. , 2011, Optics letters.

[14]  D. Werner,et al.  An octave-bandwidth negligible-loss radiofrequency metamaterial. , 2011, Nature materials.

[15]  Shanhui Fan,et al.  Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. , 2009, Optics express.

[16]  Hiroo Yugami,et al.  Thermophotovoltaic generation with selective radiators based on tungsten surface gratings , 2004 .

[17]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[18]  Ekmel Ozbay,et al.  Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration. , 2011, Optics express.

[19]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[20]  Costas M. Soukoulis,et al.  Wide-angle and polarization-independent chiral metamaterial absorber , 2009, 1005.3869.

[21]  Fritz Keilmann,et al.  Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide , 2008 .

[22]  P. Ashwin,et al.  Threshold switching via electric field induced crystallization in phase-change memory devices , 2012 .

[23]  J. Hao,et al.  Nearly total absorption of light and heat generation by plasmonic metamaterials , 2011 .

[24]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[25]  Mingbo Pu,et al.  Engineering the dispersion of metamaterial surface for broadband infrared absorption. , 2012, Optics letters.

[26]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[27]  Martin J Cryan,et al.  Study of incident angle dependence for dual-band double negative-index material using elliptical nanohole arrays. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  S. Ramakrishna,et al.  Design of highly absorbing metamaterials for infrared frequencies. , 2012, Optics express.

[29]  D. R. Chowdhury,et al.  Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. , 2011, Optics letters.

[30]  Huaiwu Zhang,et al.  Dual band terahertz metamaterial absorber: Design, fabrication, and characterization , 2009 .

[31]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[32]  Ruey-Lin Chern,et al.  Polarization-independent broad-band nearly perfect absorbers in the visible regime. , 2011, Optics express.

[33]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[34]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[35]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[36]  N. Zheludev,et al.  Metamaterial electro-optic switch of nanoscale thickness , 2010 .

[37]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[38]  Pei Ding,et al.  Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials , 2011 .

[39]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[40]  David Shrekenhamer,et al.  Liquid crystal tunable metamaterial absorber. , 2012, Physical review letters.