Intelligent prompting system to assist stroke survivors

[1]  G. Humphreys,et al.  Comparing action disorganization syndrome and dual-task load on normal performance in everyday action tasks , 2009, Neurocase.

[2]  Steve J. Young,et al.  Bayesian update of dialogue state: A POMDP framework for spoken dialogue systems , 2010, Comput. Speech Lang..

[3]  Chris D. Nugent,et al.  Home-Based Monitoring and Assessment of Parkinson's Disease , 2011, IEEE Transactions on Information Technology in Biomedicine.

[4]  R. Bellman Dynamic programming. , 1957, Science.

[5]  A. Gillespie,et al.  Scaffolding rehabilitation behaviour using a voice-mediated assistive technology for cognition , 2010, Neuropsychological rehabilitation.

[6]  N. helm-estabrooks The problem of perseveration. , 2004, Seminars in speech and language.

[7]  Alex Mihailidis,et al.  A real-world deployment of the COACH prompting system , 2013, J. Ambient Intell. Smart Environ..

[8]  Anthony Jameson,et al.  When policies are better than plans: decision-theoretic planning of recommendation sequences , 2001, IUI '01.

[9]  José M. Cogollor,et al.  Using Human-Computer Interface for Rehabilitation of Activities of Daily Living (ADL) in Stroke Patients: Lessons from the First Prototype , 2014 .

[10]  M. Silveri,et al.  Semantic memory in object use , 2009, Neuropsychologia.

[11]  F. Gutzwiller,et al.  Epidemiology of Aphasia Attributable to First Ischemic Stroke: Incidence, Severity, Fluency, Etiology, and Thrombolysis , 2006, Stroke.

[12]  Craig Boutilier,et al.  Stochastic dynamic programming with factored representations , 2000, Artif. Intell..

[13]  A. Graybiel The Basal Ganglia and Chunking of Action Repertoires , 1998, Neurobiology of Learning and Memory.

[14]  Torgny Groth,et al.  A home environment test battery for status assessment in patients with advanced Parkinson's disease , 2010, Comput. Methods Programs Biomed..

[15]  Chris Baber,et al.  Application of Human Error Identification (HEI) Techniques to Cognitive Rehabilitation in Stroke Patients with Limb Apraxia , 2013, HCI.

[16]  Martha E. Pollack,et al.  Autominder: A Case Study of Assistive Technology for Elders with Cognitive Impairment , 2006 .

[17]  Mark J. F. Gales,et al.  The Application of Hidden Markov Models in Speech Recognition , 2007, Found. Trends Signal Process..

[18]  Kallirroi Georgila,et al.  Learning user simulations for information state update dialogue systems , 2005, INTERSPEECH.

[19]  Martin J. Russell,et al.  Object-Centred Recognition of Human Activity , 2015, 2015 International Conference on Healthcare Informatics.

[20]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[21]  Steve J. Young,et al.  A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies , 2006, The Knowledge Engineering Review.

[22]  S. Paolucci,et al.  Predicting stroke inpatient rehabilitation outcome: the prominent role of neuropsychological disorders. , 1996, European neurology.

[23]  D. Brooks,et al.  Using wireless technology in clinical practice: does feedback of daily walking activity improve walking outcomes of individuals receiving rehabilitation post-stroke? Study protocol for a randomized controlled trial , 2013, BMC Neurology.

[24]  G. Humphreys,et al.  Systematic assessment of apraxia and functional predictions from the Birmingham Cognitive Screen , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[25]  G. Goldenberg,et al.  Assessment and therapy of complex activities of daily living in apraxia , 2001 .

[26]  E. Jean-Baptiste Statistical task modeling of activities of daily living for rehabilitation , 2016 .

[27]  Roberto Pieraccini,et al.  A stochastic model of human-machine interaction for learning dialog strategies , 2000, IEEE Trans. Speech Audio Process..

[28]  Martin J. Russell,et al.  POMDP Based Action Planning and Human Error Detection , 2015, AIAI.

[29]  Jesse Hoey,et al.  A planning system based on Markov decision processes to guide people with dementia through activities of daily living , 2006, IEEE Transactions on Information Technology in Biomedicine.

[30]  A. Ashburn,et al.  People with stroke living in the community: Attention deficits, balance, ADL ability and falls , 2003, Disability and rehabilitation.

[31]  Guy Shani,et al.  An MDP-Based Recommender System , 2002, J. Mach. Learn. Res..

[32]  Oliver Lemon,et al.  Cluster-based user simulations for learning dialogue strategies , 2006, INTERSPEECH.

[33]  Daniel Jackson,et al.  Rapid specification and automated generation of prompting systems to assist people with dementia , 2011, Pervasive Mob. Comput..

[34]  Martin J. Russell,et al.  Intelligent Assistive System Using Real-Time Action Recognition for Stroke Survivors , 2014, 2014 IEEE International Conference on Healthcare Informatics.

[35]  Huiru Zheng,et al.  Position-sensing technologies for movement analysis in stroke rehabilitation , 2005, Medical and Biological Engineering and Computing.

[36]  Stuart J. Russell,et al.  Control Strategies for a Stochastic Planner , 1994, AAAI.

[37]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[38]  G. Goldenberg Apraxia – The cognitive side of motor control , 2013, Cortex.

[39]  Andrew G. Barto,et al.  Learning to Act Using Real-Time Dynamic Programming , 1995, Artif. Intell..

[40]  A. Carlo,et al.  Human and economic burden of stroke , 2008 .

[41]  Mingming Zhang,et al.  Effectiveness of robot-assisted therapy on ankle rehabilitation – a systematic review , 2013, Journal of NeuroEngineering and Rehabilitation.

[42]  A. Billard,et al.  Apraxia: a review. , 2007, Progress in brain research.

[43]  Giuseppe Riccardi,et al.  Combining user intention and error modeling for statistical dialog simulators , 2010, INTERSPEECH.

[44]  Martin J. Russell,et al.  CogWatch: Automatic prompting system for stroke survivors during activities of daily living , 2016, J. Innov. Digit. Ecosyst..

[45]  E. Kleine,et al.  Decreased load on general motor preparation and visual-working memory while preparing familiar as compared to unfamiliar movement sequences , 2011, Brain and Cognition.

[46]  Carl Gutwin,et al.  KinectArms: a toolkit for capturing and displaying arm embodiments in distributed tabletop groupware , 2013, CSCW.

[47]  A. Nicol,et al.  Internet Devices and Desires: A Review of Randomized Controlled Trials of Interactive, Internet-mediated, In-home, Chronic Disease Monitoring Programs , 2009 .

[48]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[49]  Craig A. Knoblock,et al.  Planning by Rewriting , 2001, J. Artif. Intell. Res..